Acta Optica Sinica, Volume. 42, Issue 11, 1134004(2022)
Frontier Development of X-ray Diffraction-Limited Nanofocusing
[1] Huang B, Wang W Q, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[2] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000).
[3] Suzuki Y, Takeuchi A, Takano H et al. Diffraction-limited microbeam with Fresnel zone plate optics in hard X-ray regions[J]. Japanese Journal of Applied Physics, 40, 1508-1510(2001).
[4] Kang H C, Maser J, Stephenson G B et al. Nanometer linear focusing of hard X rays by a multilayer Laue lens[J]. Physical Review Letters, 96, 127401(2006).
[5] Snigirev A, Kohn V, Snigireva I et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature, 384, 49-51(1996).
[6] Yan H F. X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches[J]. Physical Review B, 81, 075402(2010).
[7] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 38, 766-774(1948).
[8] Yumoto H, Koyama T, Matsuyama S et al. Ellipsoidal mirror for two-dimensional 100-nm focusing in hard X-ray region[J]. Scientific Reports, 7, 16408(2017).
[9] Price G J, Brunton A N, Beijersbergen M W et al. X-ray focusing with Wolter microchannel plate optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 490, 276-289(2002).
[10] Elliott A. The use of toroidal reflecting surfaces in X-ray diffraction cameras[J]. Journal of Scientific Instruments, 42, 312-316(1965).
[11] Sparks C J. Jr, Ice G E, Wong J, et al. Sagittal focusing of synchrotron x-radiation with curved crystals[J]. Nuclear Instruments and Methods in Physics Research, 195, 73-78(1982).
[12] Kushnir V I, Kaganer V M, Sovorov E V. X-ray diffraction lenses with spherical focusing[J]. Acta Crystallographica Section A: Foundations of Crystallography, 41, 17-25(1985).
[13] Bilderback D H, Hoffman S A, Thiel D J. Nanometer spatial resolution achieved in hard X-ray imaging and Laue diffraction experiments[J]. Science, 263, 201-203(1994).
[14] Lagomarsino S. Jark W, di Fonzo S, et al. Submicrometer X-ray beam production by a thin film waveguide[J]. Journal of Applied Physics, 79, 4471-4473(1996).
[15] Michette A G, Pfauntsch S J, Shahin S et al. Active microstructured X-ray optical arrays[J]. Proceedings of SPIE, 7360, 736007(2009).
[16] Chen Y T, Lo T N, Chiu C W et al. Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating[J]. Journal of Synchrotron Radiation, 15, 170-175(2008).
[17] Uhlén F, Nilsson D, Rahomäki J et al. Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications[J]. Microelectronic Engineering, 116, 40-43(2014).
[18] Chang C, Sakdinawat A. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics[J]. Nature Communications, 5, 4243(2014).
[19] Chao W, Fischer P, Tyliszczak T et al. Real space soft X-ray imaging at 10 nm spatial resolution[J]. Optics Express, 20, 9777-9783(2012).
[20] Feng Y, Feser M, Lyon A et al. Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging applications[J]. Journal of Vacuum Science & Technology B, 25, 2004(2007).
[21] Vila-Comamala J, Dierolf M, Kewish C M et al. High spatial resolution STXM at 6.2 keV photon energy[C]. AIP Conference Proceedings, 1221, 80-84(2010).
[22] Nöhammer B, David C, Burghammer M et al. Coherence-matched microfocusing of hard X rays[J]. Applied Physics Letters, 86, 163104(2005).
[23] Vila-Comamala J, Gorelick S, Färm E et al. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime[J]. Optics Express, 19, 175-184(2010).
[24] Mohacsi I, Vartiainen I, Guizar-Sicairos M et al. High resolution double-sided diffractive optics for hard X-ray microscopy[J]. Optics Express, 23, 776-786(2015).
[25] Vila-Comamala J, Diaz A, Guizar-Sicairos M et al. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging[J]. Optics Express, 19, 21333-21344(2011).
[26] Mohacsi I, Vartiainen I, Rösner B et al. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range[J]. Scientific Reports, 7, 43624(2017).
[27] Li K N, Ali S, Wojcik M et al. Tunable hard X-ray nanofocusing with Fresnel zone plates fabricated using deep etching[J]. Optica, 7, 410-416(2020).
[28] Gleber S C, Wojcik M, Liu J et al. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime[J]. Optics Express, 22, 28142-28153(2014).
[29] Chen Y F. Fabrication of diffractive X-ray optics and their performance characterization[J]. Optics and Precision Engineering, 25, 2779-2795(2017).
[30] Yan H F, Conley R, Bouet N et al. Hard X-ray nanofocusing by multilayer Laue lenses[J]. Journal of Physics D, 47, 263001(2014).
[31] Yan H F, Maser J, Macrander A et al. Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture[J]. Physical Review B, 76, 115438(2007).
[32] Kang H C, Yan H F, Winarski R P et al. Focusing of hard X-rays to 16 nanometers with a multilayer Laue lens[J]. Applied Physics Letters, 92, 221114(2008).
[33] Yan H F, Rose V, Shu D M et al. Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses[J]. Optics Express, 19, 15069-15076(2011).
[34] Huang X, Yan H, Nazaretski E et al. 11 nm hard X-ray focus from a large-aperture multilayer Laue lens[J]. Scientific Reports, 3, 3562(2013).
[35] Huang X J, Conley R, Bouet N et al. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens[J]. Optics Express, 23, 12496-12507(2015).
[36] Döring F, Robisch A L, Eberl C et al. Sub-5 nm hard X-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate[J]. Optics Express, 21, 19311-19323(2013).
[37] Morgan A J, Prasciolu M, Andrejczuk A et al. High numerical aperture multilayer Laue lenses[J]. Scientific Reports, 5, 9892(2015).
[38] Bajt S, Prasciolu M, Fleckenstein H et al. X-ray focusing with efficient high-NA multilayer Laue lenses[J]. Light: Science & Applications, 7, 17162(2018).
[39] Kubec A, Niese S, Rosenthal M et al. Sub 25 nm focusing with a long working distance using multilayer Laue lenses[J]. Journal of Instrumentation, 13, C04011(2018).
[40] Li H C, Huang Q S, Zhu J T et al. Simulation on focusing performance of X-ray multilayer Laue lens for 8 keV X-ray[J]. Acta Optica Sinica, 31, 0834001(2011).
[41] Huang Q S, Zhu J T, Li H C et al. Theoretical investigation of higher orders optimized Multilayer Laue Lens for hard X-ray nano-focusing[J]. Optics Communications, 285, 5496-5499(2012).
[42] Jiang H, Wang H, Mao C W et al. Optimization of a multilayer Laue lens system for a hard X-ray nanoprobe[J]. Journal of Optics, 16, 015002(2014).
[43] Zhou L, Yue S P, Li M et al. A compound multilayer Laue lens with multiple tilting angles[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 806, 87-91(2016).
[44] Huang Q S, Li H C, Song Z Q et al. Hard X-ray one dimensional nano-focusing at the SSRF using a WSi2/Si multilayer Laue lens[J]. Chinese Physics C, 37, 028002(2013).
[45] Zhu J T, Tu Y C, Li H C et al. X-ray nanometer focusing at the SSRF based on a multilayer Laue lens[J]. Chinese Physics C, 39, 128001(2015).
[46] Jiang X M, Wang J Q, Qin Q et al. Chinese high energy photon source and the test facility[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 44, 1075-1094(2014).
[47] Schroer C G, Lengeler B. Focusing hard X rays to nanometer dimensions by adiabatically focusing lenses[J]. Physical Review Letters, 94, 054802(2005).
[48] Schroer C G, Kuhlmann M, Hunger U T et al. Nanofocusing parabolic refractive X-ray lenses[J]. Applied Physics Letters, 82, 1485-1487(2003).
[49] Schroer C G, Kuhlmann M, Hunger U T et al. Nanofocusing parabolic refractive X-ray lenses[C]. AIP Conference Proceedings, 705, 740-743(2004).
[50] Schroer C G, Kurapova O, Patommel J et al. Hard X-ray nanoprobe based on refractive X-ray lenses[J]. Applied Physics Letters, 87, 124103(2005).
[51] Patommel J, Klare S, Hoppe R et al. Focusing hard X rays beyond the critical angle of total reflection by adiabatically focusing lenses[J]. Applied Physics Letters, 110, 101103(2017).
[52] Aristov V, Grigoriev M, Kuznetsov S et al. X-ray refractive planar lens with minimized absorption[J]. Applied Physics Letters, 77, 4058-4060(2000).
[53] [53] SnigirevaI, SnigirevA, RauC, et al. and diffraction[J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment, 2001, 467/468: 982- 985.
[54] Liao K L, Liu J, Liang H et al. Sub-500 nm hard X ray focusing by compound long kinoform lenses[J]. Applied Optics, 55, 38-41(2016).
[55] Alianelli L. Sawhney K J S, Barrett R, et al. High efficiency nano-focusing kinoform optics for synchrotron radiation[J]. Optics Express, 19, 11120-11127(2011).
[56] Karvinen P, Grolimund D, Willimann M et al. Kinoform diffractive lenses for efficient nano-focusing of hard X-rays[J]. Optics Express, 22, 16676-16685(2014).
[57] Xu J, Liu G, Huang Q et al. Kinoform and saw-tooth X-ray refractive lenses development at SSRF[J]. Journal of Instrumentation, 13, C07005(2018).
[58] Liu W J, Ice G E, Assoufid L et al. Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing[J]. Journal of Synchrotron Radiation, 18, 575-579(2011).
[59] Liu C A, Ice G E, Liu W et al. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing[J]. Applied Surface Science, 258, 2182-2186(2012).
[60] Underwood J H, Barbee T W. Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet: theory and predicted performance[J]. Applied Optics, 20, 3027-3034(1981).
[61] Hignette O, Rostaing G, Cloetens P et al. Submicron focusing of hard X rays with reflecting surfaces at the ESRF[J]. Proceedings of SPIE, 4499, 105-116(2001).
[62] Yamauchi K, Yamamura K, Mimura H et al. Two-dimensional submicron focusing of hard X-rays by two elliptical mirrors fabricated by plasma chemical vaporization machining and elastic emission machining[J]. Japanese Journal of Applied Physics, 42, 7129-7134(2003).
[63] Liu W J, Ice G E, Tischler J Z et al. Short focal length Kirkpatrick-Baez mirrors for a hard X-ray nanoprobe[J]. Review of Scientific Instruments, 76, 113701(2005).
[64] Mimura H, Matsuyama S, Yumoto H et al. Hard X-ray diffraction-limited nanofocusing with Kirkpatrick-Baez mirrors[J]. Japanese Journal of Applied Physics, 44, L539-L542(2005).
[65] Yamauchi K, Mimura H, Inagaki K et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Review of Scientific Instruments, 73, 4028-4033(2002).
[66] Mimura H, Handa S, Kimura T et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 6, 122-125(2010).
[67] Yamauchi K, Mimura H, Kimura T et al. Single-nanometer focusing of hard X-rays by Kirkpatrick-Baez mirrors[J]. Journal of Physics, 23, 394206(2011).
[68] Barrett R, Baker R, Cloetens P et al. Dynamically-figured mirror system for high-energy nanofocusing at the ESRF[J]. Proceedings of SPIE, 8139, 813904(2011).
[69] Yin G C, Chang S H, Chen B Y et al. Hard X-ray nanoprobe by Montel KB mirrors at Taiwan Photon Source[J]. Proceedings of SPIE, 9592, 959204(2015).
[70] Barrett R, Baker R, Cloetens P et al. Reflective optics for hard X-ray nanofocusing applications at the ESRF[J]. Synchrotron Radiation News, 29, 10-15(2016).
[71] Inoue T, Matsuyama S, Yamada J et al. Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry[J]. Journal of Synchrotron Radiation, 27, 883-889(2020).
[72] Zhang L L, Yan S, Jiang S et al. Hard X-ray micro-focusing beamline at SSRF[J]. Nuclear Science and Techniques, 26, 060101(2015).
[73] Bergemann C. Keymeulen H, van der Veen J F. Focusing X-ray beams to nanometer dimensions[J]. Physical Review Letters, 91, 204801(2003).
[74] Zwanenburg M J. Bongaerts J H H, Peters J F, et al. Focusing of coherent X-rays in a tapered planar waveguide[J]. Physica B, 283, 285-288(2000).
[75] Jarre A, Fuhse C, Ollinger C et al. Two-dimensional hard X-ray beam compression by combined focusing and waveguide optics[J]. Physical Review Letters, 94, 074801(2005).
[76] Krüger S P, Giewekemeyer K, Kalbfleisch S et al. Sub-15 nm beam confinement by two crossed X-ray waveguides[J]. Optics Express, 18, 13492-13501(2010).
[77] Krüger S P, Neubauer H, Bartels M et al. Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties[J]. Journal of Synchrotron Radiation, 19, 227-236(2012).
[78] Chen H Y, Hoffmann S, Salditt T. X-ray beam compression by tapered waveguides[J]. Applied Physics Letters, 106, 194105(2015).
[79] Hignette O, Freund A K, Chinchio E. Incoherent X-ray mirror surface metrology[J]. Proceedings of SPIE, 3152, 188-199(1997).
[80] Mercere P, Bucourt S, Cauchon G et al. X-ray beam metrology and X-ray optic alignment by Hartmann wavefront sensing[J]. Proceedings of SPIE, 5921, 592109(2005).
[81] Idir M, Mercere P, Modi M H et al. X-ray active mirror coupled with a Hartmann wavefront sensor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616, 162-171(2010).
[82] Miao J, Charalambous P, Kirz J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).
[83] Kimura T, Mimura H, Handa S et al. Wavefield characterization of nearly diffraction-limited focused hard X-ray beam with size less than 10 nm[J]. The Review of Scientific Instruments, 81, 123704(2010).
[84] Zanette I, Weitkamp T, Donath T et al. Two-dimensional X-ray grating interferometer[J]. Physical Review Letters, 105, 248102(2010).
[85] Pfeiffer F, Weitkamp T, Bunk O et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2, 258-261(2006).
[86] H Jiang. L Xue, et al. Influence of photon beam and motor vibrations on at-wavelength X-ray speckle scanning metrology[J]. Frontier in Physics, 10, 864985(2022).
[87] Morgan K S, Paganin D M. Siu K K W. X-ray phase imaging with a paper analyzer[J]. Applied Physics Letters, 100, 124102(2012).
[88] Cloetens P. Guigay J P, de Martino C, et al. Fractional Talbot imaging of phase gratings with hard X rays[J]. Optics Letters, 22, 1059-1061(1997).
[89] Wang H C, Berujon S, Pape I et al. X-ray wavefront characterization of a Fresnel zone plate using a two-dimensional grating interferometer[J]. Optics Letters, 38, 827-829(2013).
[90] Wang H C, Sawhney K, Berujon S et al. X-ray wavefront characterization using a rotating shearing interferometer technique[J]. Optics Express, 19, 16550-16559(2011).
[91] Zhao S, Yang Y, Shen Y et al. Optics metrology and at-wavelength wavefront characterization by a microfocus X-ray grating interferometer[J]. Optics Express, 29, 22704-22713(2021).
[92] Matsuyama S, Yokoyama H, Fukui R et al. Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry[J]. Optics Express, 20, 24977-24986(2012).
[93] Salditt T, Kalbfleisch S, Osterhoff M et al. Partially coherent nano-focused X-ray radiation characterized by Talbot interferometry[J]. Optics Express, 19, 9656-9675(2011).
[94] Cerbino R, Peverini L. Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 4, 238-243(2008).
[95] Pan B, Qian K M, Xie H M et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 20, 062001(2009).
[96] Tian N X, Jiang H, Li A G et al. Influence of diffuser grain size on the speckle tracking technique[J]. Journal of Synchrotron Radiation, 27, 146-157(2020).
[97] Tian N X, Jiang H, Li A G et al. High-precision speckle-tracking X-ray imaging with adaptive subset size choices[J]. Scientific Reports, 10, 14238(2020).
[98] Bérujon S, Ziegler E, Cerbino R et al. Two-dimensional X-ray beam phase sensing[J]. Physical Review Letters, 108, 158102(2012).
[99] Chen D J, Chiang F P, Tan Y S et al. Digital speckle-displacement measurement using a complex spectrum method[J]. Applied Optics, 32, 1839-1849(1993).
[100] Hung P C, Voloshin A S. In-plane strain measurement by digital image correlation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25, 215-221(2003).
[101] Kashyap Y, Wang H C, Sawhney K. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy[J]. Review of Scientific Instruments, 87, 052001(2016).
[102] Xue L, Li Z L, Zhou T et al. Absolute metrology method of the X-ray mirror with speckle scanning technique[J]. Applied Optics, 58, 8658-8664(2019).
[103] Berujon S, Wang H C, Alcock S et al. At-wavelength metrology of hard X-ray mirror using near field speckle[J]. Optics Express, 22, 6438-6446(2014).
[104] Wang H C, Kashyap Y, Sutter J et al. At-wavelength metrology of X-ray adaptive mirrors at Diamond Light Source[J]. Proceedings of SPIE, 9206, 920608(2015).
[105] Wang H C, Sutter J, Sawhney K. Advanced in situ metrology for X-ray beam shaping with super precision[J]. Optics Express, 23, 1605-1614(2015).
[106] Zhou T H, Wang H C, Fox O et al. Auto-alignment of X-ray focusing mirrors with speckle-based at-wavelength metrology[J]. Optics Express, 26, 26961-26970(2018).
[107] Tian N X, Jiang H, Li A G et al. Study on phase compensation mirror used for hard X-ray synchrotron radiation[J]. Acta Optica Sinica, 40, 0934001(2020).
[108] Morgan A J, Murray K T, Quiney H M et al. Speckle-tracking: a software suite for ptychographic X-ray speckle tracking[J]. Journal of Applied Crystallography, 53, 1603-1612(2020).
[109] Morgan A J, Murray K T, Prasciolu M et al. Ptychographic X-ray speckle tracking with multi-layer Laue lens systems[J]. Journal of Applied Crystallography, 53, 927-936(2020).
[110] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).
[111] Kewish C M, Thibault P, Dierolf M et al. Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics[J]. Ultramicroscopy, 110, 325-329(2010).
[112] Moxham T E J, Parsons A, Zhou T et al. Hard X-ray ptychography for optics characterization using a partially coherent synchrotron source[J]. Journal of Synchrotron Radiation, 27, 1688-1695(2020).
[113] Kewish C M, Guizar-Sicairos M, Liu C A et al. Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data[J]. Optics Express, 18, 23420-23426(2010).
[114] Giewekemeyer K, Wilke R N, Osterhoff M et al. Versatility of a hard X-ray Kirkpatrick-Baez focus characterized by ptychography[J]. Journal of Synchrotron Radiation, 20, 490-497(2013).
[115] Öztürk H, Yan H, He Y et al. Multi-slice ptychography with large numerical aperture multilayer Laue lenses[J]. Optica, 5, 601-607(2018).
[116] Schropp A, Hoppe R, Meier V et al. Full spatial characterization of a nanofocused X-ray free-electron laser beam by ptychographic imaging[J]. Scientific Reports, 3, 1633(2013).
[117] Handa S, Kimura T, Mimura H et al. Extended knife-edge method for characterizing sub-10-nm X-ray beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616, 246-250(2010).
[118] Mimura H, Yumoto H, Matsuyama S et al. Direct determination of the wave field of an X-ray nanobeam[J]. Physical Review A, 77, 015812(2008).
[119] Matsuyama S, Inoue T, Yamada J et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors[J]. Scientific Reports, 8, 17440(2018).
[120] Rutishauser S, Rack A, Weitkamp T et al. Heat bump on a monochromator crystal measured with X-ray grating interferometry[J]. Journal of Synchrotron Radiation, 20, 300-305(2013).
[121] Sutter J P, Chater P A, Signorato R et al. 1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays[J]. Optics Express, 27, 16121-16142(2019).
[122] Signorato R. R&D program on multisegmented piezoelectric bimorph mirrors at the ESRF: status report[J]. Proceedings of SPIE, 3447, 20-31(1998).
[123] Colldelram C, Gonzalez N, Gonzalez J et al. Adaptive optics bender with sub-nanometer correction and stability[C]. AIP Conference Proceedings, 2054, 060013(2019).
[124] Cocco D, Hardin C, Morton D et al. Adaptive shape control of wavefront-preserving X-ray mirrors with active cooling and heating[J]. Optics Express, 28, 19242-19254(2020).
[125] Susini J, Labergerie D, Zhang L. Compact active/adaptive X-ray mirror: bimorph piezoelectric flexible mirror[J]. Review of Scientific Instruments, 66, 2229-2231(1995).
[126] Nistea I T, Alcock S G, Badami V et al. Controlling an active bimorph deformable mirror with sub-nanometre resolution[J]. Proceedings of SPIE, 11109, 111090E(2019).
[127] Alcock S G, Nistea I T, Badami V G et al. High-speed adaptive optics using bimorph deformable X-ray mirrors[J]. The Review of Scientific Instruments, 90, 021712(2019).
[128] Susini J, Labergerie D R, Hignette O. R&D program on bimorph mirrors at the ESRF[J]. Proceedings of SPIE, 2856, 130-144(1996).
[129] Goto T, Nakamori H, Kimura T et al. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors[J]. The Review of Scientific Instruments, 86, 043102(2015).
[130] Matsuyama S, Nakamori H, Goto T et al. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors[J]. Scientific Reports, 6, 24801(2016).
[131] Goto T, Matsuyama S, Hayashi H et al. Nearly diffraction-limited hard X-ray line focusing with hybrid adaptive X-ray mirror based on mechanical and piezo-driven deformation[J]. Optics Express, 26, 17477-17486(2018).
[132] Inoue T, Nishioka Y, Matsuyama S et al. Optimal deformation procedure for hybrid adaptive X-ray mirror based on mechanical and piezo-driven bending system[J]. Review of Scientific Instruments, 92, 123706(2021).
[133] Kimura T, Handa S, Mimura H et al. Development of adaptive mirror for wavefront correction of hard X-ray nanobeam[J]. Proceedings of SPIE, 7077, 707709(2008).
[134] Shu D M, Li A G, Jiang H et al. Current status of the hard X-ray nanoprobe beamline at the SSRF[J]. Proceedings of SPIE, 10389, 103890J(2017).
[135] Jiang H, Tian N X, Liang D X et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J]. Journal of Synchrotron Radiation, 26, 729-736(2019).
[136] Li T, Wang N, Zhu W Q et al. Finite element analysis of the compensation of the surface shape accuracy of the piezoelectric bimorph mirror[J]. Acta Optica Sinica, 42, 0734001(2022).
[137] Zhang Y, Li M, Tang S Z et al. Analysis of an X-ray mirror made from piezoelectric bimorph[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 860, 13-18(2017).
[138] Seiboth F, Schropp A, Scholz M et al. Perfect X-ray focusing via fitting corrective glasses to aberrated optics[J]. Nature Communications, 8, 14623(2017).
[139] Seiboth F, Brückner D, Kahnt M et al. Hard X-ray wavefront correction via refractive phase plates made by additive and subtractive fabrication techniques[J]. Journal of Synchrotron Radiation, 27, 1121-1130(2020).
[140] Laundy D, Dhamgaye V, Moxham T et al. Adaptable refractive correctors for X-ray optics[J]. Optica, 6, 1484-1490(2019).
Get Citation
Copy Citation Text
Hui Jiang, Aiguo Li. Frontier Development of X-ray Diffraction-Limited Nanofocusing[J]. Acta Optica Sinica, 2022, 42(11): 1134004
Category: X-Ray Optics
Received: Feb. 9, 2022
Accepted: Mar. 28, 2022
Published Online: Jun. 3, 2022
The Author Email: Aiguo Li (liaiguo@zjlab.org.cn)