Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 10, 1391(2024)
Lightweight image super-resolution combining residual learning and layer attention
[2] HUO H Q, LU L. Scene text recognition based on feature fusion in space domain and frequency domain[J]. Computer Science, 50, 48-55(2023).
[9] LUO X T, QU Y Y, XIE Y et al. Lattice network for lightweight image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 4826-4842(2023).
[11] YANG Q Q, WANG G X, ZHAO Y X et al. Multi-scale deep residual learning for cloud removal[C], 4967-4970(2020).
[16] WANG X H, WANG Q, ZHAO Y Z et al. Lightweight single-image super-resolution network with attentive auxiliary feature learning[C], 268-285(2021).
[18] LI Y Y, LIU Y C, WILLIAMSON D S. On loss functions for deep-learning based T60 estimation[C], 486-490(2021).
[20] WANG M Q, LU S Y, ZHU D Y et al. A high-speed and low-complexity architecture for softmax function in deep learning[C], 223-226(2018).
[22] GAO C, ZHOU R G, LI X. Quantum color image scaling based on bilinear interpolation[J]. Chinese Physics B, 32, 050303(2023).
Get Citation
Copy Citation Text
Difan WU, Xuande ZHANG. Lightweight image super-resolution combining residual learning and layer attention[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(10): 1391
Category:
Received: Feb. 18, 2024
Accepted: --
Published Online: Nov. 13, 2024
The Author Email: Xuande ZHANG (zhangxuande@sust.edu.cn)