Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 10, 1391(2024)

Lightweight image super-resolution combining residual learning and layer attention

Difan WU and Xuande ZHANG*
Author Affiliations
  • School of Electronic Information and Artificial Intelligence,Shaanxi University of Science & Technology,Xi′an710021,China
  • show less
    Figures & Tables(12)
    Overall structure of RLAN
    Internal structure diagram of RLFB
    Internal structure diagram of LAM
    Schematic diagram of sub-pixel upsampling
    Visual results of RLAN(Ours)compared with other advanced SR models(×4)
    Experimental results of validity of LAM(×4)
    • Table 1. Metric results of RLAN(Ours)compared with other advanced SR models(×2)

      View table
      View in Article

      Table 1. Metric results of RLAN(Ours)compared with other advanced SR models(×2)

      ModelParams/kMetricSet5Set14BSD100Urban100
      VDSR666PSNR/SSIM37.53/0.958 733.05/0.912 731.90/0,896 030.77/0.914 1
      DRCN1 774PSNR/SSIM37.63/0.958 833.04/0.911 831.85/0.894 230.75/0.913 3
      SMSR985PSNR/SSIM38.00/0.960 133.64/0.917 932.17/0.899 032.19/0.928 4
      LatticeNet-CL756PSNR/SSIM38.06/0.960 833.70/0.918 832.21/0.900 032.29/0.929 1
      RLFN543PSNR/SSIM38.07/0.960 733.72/0.918 732.22/0.900 232.33/0.930 2
      RLAN(Ours)373PSNR/SSIM38.29/0.961 834.26/0.920 132.81/0.901 532.61/0.929 4
    • Table 2. Metric results of RLAN(Ours)compared with other advanced SR models(×3)

      View table
      View in Article

      Table 2. Metric results of RLAN(Ours)compared with other advanced SR models(×3)

      ModelParams/kMetricSet5Set14BSD100Urban100
      VDSR666PSNR/SSIM33.66/0.921 329.77/0.831 428.80/0.797 427.14/0.827 9
      DRCN1 774PSNR/SSIM33.82/0.922 629.76/0.831 128.82/0.796 727.15/0.827 7
      SMSR993PSNR/SSIM34.40/0.927 030.33/0.841 229.10/0.805 028.25/0.853 6
      LatticeNet-CL765PSNR/SSIM34.46/0.927 530.37/0.842 229.12/0.805 428.23/0.852 5
      RLFN543PSNR/SSIM34.52/0.928 130.41/0.843 829.15/0.805 728.39/0.856 9
      RLAN(Ours)373PSNR/SSIM34.71/0.929 330.57/0.846 129.23/0.805 928.68/0.860 1
    • Table 3. Metric results of RLAN(Ours)compared with other advanced SR models(×4)

      View table
      View in Article

      Table 3. Metric results of RLAN(Ours)compared with other advanced SR models(×4)

      ModelParams/kMetricSet5Set14BSD100Urban100
      VDSR666PSNR/SSIM31.35/0.883 828.01/0.767 427.29/0.725 125.18/0.752 4
      DRCN1 774PSNR/SSIM31.53/0.885 428.02/0.767 027.23/0.723 325.14/0.751 0
      SMSR1 006PSNR/SSIM32.12/0.893 228.55/0.780 627.55/0.735 126.11/0.785 2
      LatticeNet-CL777PSNR/SSIM32.27/0.894 428.61/0.781 927.57/0.736 526.16/0.785 5
      RLFN543PSNR/SSIM32.24/0.894 928.63/0.781 027.58/0.736 426.17/0.786 7
      RLAN(Ours)373PSNR/SSIM32.58/0.899 428.76/0.782 128.02/0.735 827.06/0.788 4
    • Table 4. Experimental results of structural validity of RLFB(×4)

      View table
      View in Article

      Table 4. Experimental results of structural validity of RLFB(×4)

      ModelParams/kPSNR
      RLAN_ca39428.65
      RLAN_pconv17828.11
      RLAN37328.76
    • Table 5. Experimental results of the effectiveness of pixel attention reconstruction block(×4)

      View table
      View in Article

      Table 5. Experimental results of the effectiveness of pixel attention reconstruction block(×4)

      ModelParams/kPSNR
      RLAN_ps37828.58
      RLAN37328.76
    • Table 6. Experimental results of pixel attention reconstruction block and convolution(×4)

      View table
      View in Article

      Table 6. Experimental results of pixel attention reconstruction block and convolution(×4)

      ModelParams/kPSNR
      RLFN_437828.60
      RLFN_654328.63
      RLFN_4p37328.65
    Tools

    Get Citation

    Copy Citation Text

    Difan WU, Xuande ZHANG. Lightweight image super-resolution combining residual learning and layer attention[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(10): 1391

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 18, 2024

    Accepted: --

    Published Online: Nov. 13, 2024

    The Author Email: Xuande ZHANG (zhangxuande@sust.edu.cn)

    DOI:10.37188/CJLCD.2024-0046

    Topics