Chinese Journal of Lasers, Volume. 51, Issue 18, 1801017(2024)

Layer Classification Algorithm in Terahertz Thickness Measurement Technology

Jie Lin1,2, Ji Qi1,2, Yuqi Zhang2,3, Wei Zhang2, Yuang Chen1, Mingxia He1,2, Qiuhong Qu2, and Yizhu Zhang1,2、*
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Sichuan Innovation Research Institute of Tianjin University, Chengdu 610213, Sichuan , China
  • 3School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
  • show less
    Figures & Tables(9)
    THz-TDS scanning system. (a) Schematic diagram of system; (b) picture of system
    Paint coating sample and measurement point distribution. (a) Different coating regions of the paint coating sample;
    Terahertz reflection data of paint layer with different number of layers. (a) 100 scans of the single-layer paint; (b) 100 scans of the double-layer paint; (c) 200 scans of the triple-layer paint; (d) time domain reflection waveform of the single-layer paint; (e) time domain reflection waveform of the double-layer paint; (f) time domain reflection waveform of the triple-layer paint
    Confusion matrix of the test set by different methods. (a) GS-SVM; (b) WOA-SVM; (c) SSA-SVM; (d) ISSA-SVM;
    AUC scores and the ROC curves of the test set by different methods. (a) GS-SVM; (b) WOA-SVM; (c) SSA-SVM;
    Measurement results of paint coating thickness for multi-coated sample
    • Table 1. Formulas of 29 time domain and frequency domain features in comprehensive feature set

      View table

      Table 1. Formulas of 29 time domain and frequency domain features in comprehensive feature set

      ClassFeatureFormula
      Time domainMean valuex¯=1Ni=1Nxi
      RMSXRMS=1Ni=1Nxi2
      Root amplitude valueXf=1Ni=1N|xi|
      Mean absolute value|x¯|=1Ni=1N|xi|
      Skewnessα=1Ni=1Nxi-x¯/σ3
      Kurtosisβ=1Ni=1Nxi-x¯/σ4
      Varianceσ2=1Ni=1N(xi-x¯)2
      Maximum valueXmax=max(xi)
      Minimum valueXmin=min(xi)
      Peak-to-peak valueXPP=Xmax-Xmin
      Waveform indicatorS=XRMS /|x¯|
      Peak indicatorC=Xmax /XRMS
      Impulse indicatorI=Xmax /|x¯|
      Margin indexL=Xmax /Xf
      Skewness indicatorKα=α /XRMS
      Kurtosis indicatorKβ=β/XRMS
      Frequency domainMean frequencyF17=1Kk=1Ks(k)
      Spectral RMS valueF18=1K-1k=1Ks(k)-F172
      Signal skewnessF19=k=1Ks(k)-F173 / (K-1)F183
      Signal kurtosisF20=k=1Ks(k)-F174 / (K-1)F184
      Frequency centroidF21=k=1Kfks(k)/k=1Ks(k)
      Spectral standard deviationF22=1K-1k=1K(fk-F21)2s(k)
      RMS frequencyF23=k=1Kfk2s(k)/k=1Ks(k)
      Third-order central frequencyF24=k=1Kfk3s(k)/k=1Kfk2s(k)3
      Fourth-order central frequencyF25=k=1Kfk4s(k)/k=1Kfk2s(k)4
      Frequency centroid ratioF26=F22/F21
      Frequency skewnessF27=k=1K(fk-F21)3s(k) / (K-1)F223
      Frequency kurtosisF28=k=1K(fk-F21)4s(k) / (K-1)F224
      Standard deviation frequencyF29=k=1K(fk-F21)1/2s(k) / (K-1)F221/2
    • Table 2. Comparison of layer classification results for SVM parameters optimized by different methods

      View table

      Table 2. Comparison of layer classification results for SVM parameters optimized by different methods

      Classification methodOptimal valueAccuracyRunning time /s
      CgTraining setTest set
      GS-SVM64.00000.12599.29%(278/280)98.33%(118/120)32.86
      WOA-SVM0.178226.78097.14%(272/280)92.50%(111/120)0.65
      SSA-SVM24.300022.000100.00%(280/280)95.00%(114/120)0.55
      ISSA-SVM19.593030.000100.00%(280/280)96.67%(116/120)0.66
      KPCA-ISSA-SVM9.530026.000100.00%(280/280)98.33%(118/120)0.46
    • Table 3. Precision rate, recall rate, and F1 score of SVM model optimized by different methods

      View table

      Table 3. Precision rate, recall rate, and F1 score of SVM model optimized by different methods

      Classification

      method

      PRF1 score
      Class 1Class 2Class 3Class 1Class 2Class 3Class 1Class 2Class 3
      GS-SVM0.971.000.981.000.931.000.980.970.99
      WOA-SVM1.000.771.000.931.000.880.970.870.94
      SSA-SVM1.000.850.980.970.970.930.980.910.96
      ISSA-SVM1.000.910.980.930.970.980.970.940.98
      KPCA-ISSA-SVM0.941.001.001.000.970.980.970.980.99
    Tools

    Get Citation

    Copy Citation Text

    Jie Lin, Ji Qi, Yuqi Zhang, Wei Zhang, Yuang Chen, Mingxia He, Qiuhong Qu, Yizhu Zhang. Layer Classification Algorithm in Terahertz Thickness Measurement Technology[J]. Chinese Journal of Lasers, 2024, 51(18): 1801017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 12, 2024

    Accepted: Jul. 22, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Zhang Yizhu (zhangyizhu@tju.edu.cn)

    DOI:10.3788/CJL240955

    CSTR:32183.14.CJL240955

    Topics