Chinese Journal of Lasers, Volume. 51, Issue 19, 1901002(2024)

Research Progress of High‐Power Laser Transmission Technology Based on Hollow‐Core Anti‐Resonant Fibers (Invited)

Jingyuan Yao, Xin Zhang, Shuai Gu, Xin Wu, Yu Wen, and Pu Wang*
Author Affiliations
  • Institute of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    References(65)

    [1] Naeem M. Advances in drilling with fiber lasers[J]. Proceedings of SPIE, 9657, 965705(2015).

    [6] Zhou P, Huang L J, Leng J Y et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica (Technologica), 50, 123-135(2020).

    [10] Roberts P J, Couny F, Birks T A et al. Achieving low loss and low nonlinearity in hollow core photonic crystal fibers[C], 1240-1242(2005).

    [15] Lu W J, Zhang X, Zhu K et al. Propagation of high-power picosecond pulse at 1064 nm using nodeless anti-resonant hollow-core fibre[J]. Chinese Journal of Lasers, 49, 0306001(2022).

    [19] Shere W, Fokoua E N, Jasion G T et al. Designing multi-mode anti-resonant hollow-core fibers for industrial laser power delivery[J]. Optics Express, 30, 40425-40440(2022).

    [28] Fu Q, Wu Y D, Davidson I A et al. Hundred-meter-scale, kilowatt peak-power, near-diffraction-limited, mid-infrared pulse delivery via the low-loss hollow-core fiber[J]. Optics Letters, 47, 5301-5304(2022).

    [30] Leroi F, Gérôme F, Didierjean J et al. UV 20W-class single-mode nanosecond pulse delivery using a vacuum-free/ambient air inhibited-coupling hollow-core fiber[J]. Applied Physics B, 129, 116(2023).

    [35] Zhu X Y, Yu F, Wu D K et al. Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 µm[J]. Optics Letters, 47, 3548-3551(2022).

    [37] Zhao M, Yu F, Wu D K et al. Delivery of nanosecond laser pulses by multi-mode anti-resonant hollow core fiber at 1 µm wavelength[J]. Optics Express, 32, 17229-17238(2024).

    [38] Jaworski P, Yu F, Maier R R J et al. Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications[J]. Optics Express, 21, 22742-22753(2013).

    [39] Debord B, Gérôme F, Honninger C et al. Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber[C], JTh5C.4-15(2015).

    [41] Gao S F, Wang Y Y, Liu X L et al. Hollow-core anti-resonant fiber and its use for propagation of high power ultrashort pulse[J]. Chinese Journal of Lasers, 44, 0201012(2017).

    [42] Liang L B, Guan J Z, Zhu X Y et al. Delivery of nearly diffraction-limited picosecond laser pulses in the air-filled anti-resonant hollow-core fiber at 1 μm wavelength[J]. Photonics, 10, 416(2023).

    [44] Guichard F, Giree A, Zaouter Y et al. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber[J]. Optics Express, 23, 7416-7423(2015).

    [47] Cai Y M, Mai Y F, Xiang S et al. Flexible beam delivery of ultrafast laser through vacuum-pumped anti-resonant hollow-core fiber[J]. Frontiers in Physics, 11, 1160287(2023).

    [48] Yan C C, Li H Y, Huang Z Y et al. Highly stable, flexible delivery of microjoule-level ultrafast pulses in vacuumized anti-resonant hollow-core fibers for active synchronization[J]. Optics Letters, 48, 1838-1841(2023).

    [51] Zhu K, Zhang X, Lu W J et al. Propagation and attenuation characterization of hollow-core anti-resonant fiber at 2.60‒4.35 μm[J]. Laser & Optoelectronics Progress, 59, 0306004(2022).

    [52] Urich A, Maier R R J, Yu F et al. Flexible delivery of Er∶YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures[J]. Biomedical Optics Express, 4, 193-205(2012).

    [54] Huang L, Wang Y Z, Zhang Y Y et al. High-efficiency 6-hole structure anti-resonant hollow-core fiber 2.79 μm Cr, Er∶YSGG high-energy pulse laser transmission system[J]. Optics & Laser Technology, 175, 110743(2024).

    [56] Jaworski P, Yu F, Carter R M et al. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining[J]. Optics Express, 23, 8498-8506(2015).

    [57] Yu F, Cann M, Brunton A et al. Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery[J]. Optics Express, 26, 10879-10887(2018).

    [60] Suslov D, Komanec M, Numkam Fokoua E R et al. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber[J]. Scientific Reports, 11, 8799(2021).

    [61] Suslov D, Numkam Fokoua E, Dousek D et al. Low loss and broadband low back-reflection interconnection between a hollow-core and standard single-mode fiber[J]. Optics Express, 30, 37006-37014(2022).

    [63] Wang C Y, Yu R W, Xiong C et al. Ultralow-loss fusion splicing between antiresonant hollow-core fibers and antireflection-coated single-mode fibers with low return loss[J]. Optics Letters, 48, 1120-1123(2023).

    [64] Eilzer S, Wedel B. Hollow core optical fibers for industrial ultra short pulse laser beam delivery applications[J]. Fibers, 6, 80(2018).

    [65] Boullet J, Vinçont C, Berisset M et al. High energy ultrashort pulse delivery through hollow-core photonic crystal fiber[J]. Proceedings of SPIE, 11667, 116670F(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jingyuan Yao, Xin Zhang, Shuai Gu, Xin Wu, Yu Wen, Pu Wang. Research Progress of High‐Power Laser Transmission Technology Based on Hollow‐Core Anti‐Resonant Fibers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 17, 2024

    Accepted: Jul. 24, 2024

    Published Online: Oct. 11, 2024

    The Author Email: Wang Pu (wangpuemail@bjut.edu.cn)

    DOI:10.3788/CJL240969

    CSTR:32183.14.CJL240969

    Topics