Chinese Journal of Lasers, Volume. 51, Issue 19, 1901002(2024)

Research Progress of High‐Power Laser Transmission Technology Based on Hollow‐Core Anti‐Resonant Fibers (Invited)

Jingyuan Yao, Xin Zhang, Shuai Gu, Xin Wu, Yu Wen, and Pu Wang*
Author Affiliations
  • Institute of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    Figures & Tables(15)
    ARROW structure and its transmission spectrum[18]
    SEM images of HC-ARFs. (a) Kagome HC-ARF[21]; (b) ice-cream type HC-ARF [22]; (c) nodeless HC-ARF [23]; (d) conjoined-tube HC-ARF[24]; (e) nested HC-ARF[25]; (f) double nested HC-ARF[26]
    Loss of HC-ARFs compared to the intrinsic loss limit of pure silica core SMF[26]
    Schematic of typical setup of high-power laser transmission system based on HC-ARF
    Long-distance transmission experiment of high power laser based on nested HC-ARF[11]. (a) Diagram of transmission experimental setup; (b) SEM image of nested HC-ARF with corresponding transmission loss spectrum and dispersion curve; (c) output power and transmission efficiency versus input power; (d) input and output spectra at different powers
    Experiment of narrow linewidth high-power laser long-distance transmission[32]. (a) Diagram of experimental setup; (b) thermal image of fiber input and cladding light stripper for 2.3 kW input power; (c) output power as a function of input power; (d) output spectra characterization of laser source and HC-ARF
    Experiment of 3 kW continuous-wave laser hundred meters transmission[14]. (a) SEM image of the multimode nested HC-ARF used in experiment; (b) output power and transmission efficiency as a function of input power
    Experiment of high peak power ultrafast laser transmission[13]. (a) Diagram of experimental setup; (b) variation of input single-pulse energy and energy density at the quartz-wall with fiber core diameter of HC-ARF
    Experiment of high-power laser flexible transmission at 2 µm band[27]. (a) SEM image of the fabricated nested HC-ARF; (b) loss spectra of the fiber; (c) differential group delay plot from spectral and spatial imaging technique through 10 m (solid) and 70 m (dashed) of fiber; (d) evolution of the output average power through a 6-m-long nested HC-ARF with the increase of the input average power, where the inset shows fiber-delivered near field beam profile
    Experiment of high-power green laser transmission[29]. (a) Variation of output power with input power for different transmission lengths; (b) spectra comparison between the 15 m PCF and 15 m or 300 m HC-ARFs after laser transmission
    • Table 1. Progress of high-power continuous-wave laser transmission in near-infrared band using HC-ARF

      View table

      Table 1. Progress of high-power continuous-wave laser transmission in near-infrared band using HC-ARF

      YearFiberFiber lengthWavelength /nmOutput powerTransmission efficiency /%
      201831Kagome HC-ARF1.5 m10701.2 kW86
      202133SR-PCF3 m1080300 W78.6
      202211Nested HC-ARF1 km10751 kW80
      202234HC-NCF1 m10701021 W87.5
      202235SR-PCF5 m10801 kW80
      202332Nested HC-ARF104.5 m10802.198 kW95.1
      202414Nested HC-ARF

      10 m

      110 m

      1080

      2951 W

      2850 W

      95.2

      92

    • Table 2. Progress of nanosecond pulsed laser transmission in near-infrared band using HC-ARF

      View table

      Table 2. Progress of nanosecond pulsed laser transmission in near-infrared band using HC-ARF

      YearFiber

      Wavelength /

      nm

      Pulsed

      width /ns

      Output pulse

      energy /mJ

      Peak PowerTransmission efficiency /%
      201236Kagome HC-ARF1064940.44 MW89
      201338HC-NCF1064601.118.3 kW92
      201412Kagome HC-ARF106430301 MW85
      202437SR-PCF106414.621.81.49 MW85
    • Table 3. Progress of ultrashort pulsed laser transmission in near-infrared band using HC-ARF

      View table

      Table 3. Progress of ultrashort pulsed laser transmission in near-infrared band using HC-ARF

      YearFiberWavelength /nmPulsed width

      Output power

      (average/peak power)

      Output pulse

      energy

      Transmission

      efficiency /%

      201338HC-NCF10306 ps36 W/15.3 MW92 µJ84
      201539Kagome HC-ARF1030300 ps1.03 W/3.5 MW1.03 mJ75
      201640SR-PCF103222 ps70 W/318.1 kW7 µJ81
      201741SR-PCF106417 ps50 W/10.8 MW124 µJ68
      202215SR-PCF106415 ps37.5 W/25 MW370 µJ93
      202342SR-PCF10648.7 ps15 W/3.5 MW30 µJ77
      201443Kagome HC-ARF1030600 fs0.7 W/1.4 GW700 µJ70
      201544Kagome HC-ARF1030330 fs3.5 W/212 MW70 µJ75
      201945Kagome HC-ARF1028234 fs20 W/427 MW100 µJ90
      202046HC-NCF1028230 fs1.2 W/86 MW19.8 µJ60
      202347SR-PCF1030670 fs7.2 W/53.7 MW36 µJ72
      202348SR-PCF80035 fs3.4 mW/97 MW3.4 µJ42.5
      202313

      Nested HC-ARF

      SR-PCF

      80040 fs

      0.2 W/5 GW

      1.3 W/20 GW

      200 µJ

      1.3 mJ

      85

      65

    • Table 4. Progress of laser transmission in mid-infrared band using HC-ARF

      View table

      Table 4. Progress of laser transmission in mid-infrared band using HC-ARF

      YearFiberWavelength /µm

      Pulsed

      width

      Output power

      (average/peak power)

      Output pulse

      energy

      Transmission efficiency /%
      201252HC-NCF2.94225 µs810 mW/0.24 kW54 mJ
      202227Nested HC-ARF2160 ps60.05 W/11.52 kW1.84 µJ80.6
      202228SR-PCF3.3120 ps

      592 mW(5 m) /

      4.9 kW(5 m)

      133 mW(108 m) /

      1.1 kW(108 m)

      0.59 µJ(5 m)

      0.13 µJ(108 m)

      67(5 m)

      15(108 m)

      202251SR-PCF

      4.08

      4.35

      25 mW(50 m) /

      8 mW(3 m)

      202353Nested HC-ARF3.1CW20.05 W92
      202454SR-PCF2.79350 µs58.9 mW/0.03 kW11.78 mJ77.3
    • Table 5. Progress of laser transmission in visible and ultraviolet bands using HC-ARF

      View table

      Table 5. Progress of laser transmission in visible and ultraviolet bands using HC-ARF

      YearFiberWavelength /nm

      Pulsed

      width

      Output power

      (average/peak power)

      Output pulse energy /µJTransmission efficiency /%
      201556HC-NCF5156 ps12 W/5 MW3086.3
      201755SR-PCF53220 ps32 W/7.2 MW14494.7
      202429SR-PCF5200.52 ns

      3 W(300 m)/

      3.6 kW(300 m)

      1.9

      (300 m)

      19

      (300 m)

      201817SR-PCF35520 ps106 mW/5.3 MW10666
      201857SR-PCF26617 ns13.8 mW/0.03 kW0.4640
      202330SR-PCF34310 ns23.3 W/15.5 kW15589.1
    Tools

    Get Citation

    Copy Citation Text

    Jingyuan Yao, Xin Zhang, Shuai Gu, Xin Wu, Yu Wen, Pu Wang. Research Progress of High‐Power Laser Transmission Technology Based on Hollow‐Core Anti‐Resonant Fibers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 17, 2024

    Accepted: Jul. 24, 2024

    Published Online: Oct. 11, 2024

    The Author Email: Wang Pu (wangpuemail@bjut.edu.cn)

    DOI:10.3788/CJL240969

    CSTR:32183.14.CJL240969

    Topics