Chinese Journal of Lasers, Volume. 51, Issue 9, 0907017(2024)
Identification and Risk Assessment of Atherosclerotic Plaques Based on IVOCT
[1] Arbab-Zadeh A, Fuster V. From detecting the vulnerable plaque to managing the vulnerable patient[J]. Journal of the American College of Cardiology, 74, 1582-1593(2019).
[2] Libby P, Pasterkamp G, Crea F et al. Reassessing the mechanisms of acute coronary syndromes[J]. Circulation Research, 124, 150-160(2019).
[3] Bentzon J F, Otsuka F, Virmani R et al. Mechanisms of plaque formation and rupture[J]. Circulation Research, 114, 1852-1866(2014).
[4] Virmani R, Burke A P, Farb A et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology, 47, C13-C18(2006).
[5] Feldman M D, Cabe A G, Milner T E. IVOCT has a bright future in the identification of vulnerable plaques[J]. JACC: Cardiovascular Imaging, 12, 1529-1531(2019).
[6] Lu D X, Fang W H, Li Y Y et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 919-935(2020).
[7] Wei Y Z, Yuan X, Lan G P et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 58, 2400002(2021).
[8] Chu M, Jia H B, Gutiérrez-Chico J L et al. Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques[J]. EuroIntervention, 17, 41-50(2021).
[9] Boi A, Jamthikar A D, Saba L C et al. A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography[J]. Current Atherosclerosis Reports, 20, 33(2018).
[10] Cheimariotis G A, Riga M, Toutouzas K, Lhotska L, Sukupova L, Lackocić I et al. Automatic characterization of plaques and tissue in IVOCT images using a multi-step convolutional neural network framework[M]. World congress on medical physics and biomedical engineering 2018, 68, 261-265(2019).
[11] Wang J B. OCT image recognition of cardiovascular vulnerable plaque based on CNN[J]. IEEE Access, 8, 140767-140776(2020).
[12] Zhu G F, Chu T S, Ruan Z M et al. Inflammation-related microRNAs are associated with plaque stability calculated by IVUS in coronary heart disease patients[J]. Journal of Interventional Cardiology, 2019, 9723129(2019).
[13] Kolluru C, Prabhu D, Gharaibeh Y et al. Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images[J]. Journal of Medical Imaging, 5, 044504(2018).
[14] Gessert N, Lutz M, Heyder M et al. Automatic plaque detection in IVOCT pullbacks using convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 38, 426-434(2019).
[15] Sun Z, Wang S Y. Application of deep learning in intravascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 59, 2200002(2022).
[16] Shi P W, Xin J M, Liu S J et al. Vulnerable plaque recognition based on attention model with deep convolutional neural network[C], 834-837(2018).
[17] Tearney G J, Regar E, Akasaka T et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. Journal of the American College of Cardiology, 59, 1058-1072(2012).
[18] Stefanadis C, Antoniou C K, Tsiachris D et al. Coronary atherosclerotic vulnerable plaque: current perspectives[J]. Journal of the American Heart Association, 6, e005543(2017).
[19] Arbustini E, Grasso M, Diegoli M et al. Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study[J]. The American Journal of Cardiology, 68, 36(1991).
[20] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[21] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[22] Yin X, Liu X M. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 27, 964-975(2018).
[23] Dalen J E, Alpert J S, Goldberg R J et al. The epidemic of the 20th century: coronary heart disease[J]. The American Journal of Medicine, 127, 807-812(2014).
[24] Gutiérrez-Chico J L, Chen Y D, Yu W et al. Diagnostic accuracy and reproducibility of optical flow ratio for functional evaluation of coronary stenosis in a prospective series[J]. Cardiology Journal, 27, 350-361(2020).
[25] de Bruyne B, Sarma J. Fractional flow reserve: a review: invasive imaging[J]. Heart, 94, 949-959(2008).
[26] Xu M D, Cheng J, Wong D W K et al. Automatic atherosclerotic heart disease detection in intracoronary optical coherence tomography images[C], 174-177(2014).
[27] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[28] Shi P W, Xin J M, Zheng N N. Weakly supervised vulnerable plaques detection by IVOCT image[C], 1983-1986(2020).
[29] Liu S J, Deng Y Y, Xin J M et al. SRCNN: cardiovascular vulnerable plaque recognition with salient region proposal networks[C], 38-45(2018).
Get Citation
Copy Citation Text
Zejun Han, Xingkang Lin, Yaoyang Qiu, Xiao Zhang, Lei Gao, Qin Li. Identification and Risk Assessment of Atherosclerotic Plaques Based on IVOCT[J]. Chinese Journal of Lasers, 2024, 51(9): 0907017
Category: biomedical photonics and laser medicine
Received: Nov. 29, 2023
Accepted: Jan. 15, 2024
Published Online: Apr. 26, 2024
The Author Email: Gao Lei (nkgaolei2010@126.com), Li Qin (liqin@bit.edu.cn)
CSTR:32183.14.CJL231452