Journal of Synthetic Crystals, Volume. 54, Issue 7, 1208(2025)

Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films

Yansu SHAN1, Xingmu LI1, Xia WANG2, Dehua WU3, and Bingqiang CAO1、*
Author Affiliations
  • 1School of Materials Science and Engineering,University of Jinan,Jinan 250002,China
  • 2School of Physics and Technology,University of Jinan,Jinan 250002,China
  • 3Shandong Inspur Huaguang Optoelectronics Co. ,Ltd. ,Jinan 250002,China
  • show less
    References(65)

    [1] PACCHIONI G. Highly efficient perovskite LEDs. Nature Reviews Materials, 6, 108(2021).

    [2] ASSADI M K, BAKHODA S, SAIDUR R et al. Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 81, 2812-2822(2018).

    [3] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv Mater, 29, 1605242(2017).

    [4] STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A et al. Inorganic and hybrid perovskite based laser devices: a review. Materials, 12, 859(2019).

    [5] ZANATTA A R. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320(2022).

    [6] TAI Q D, TANG K C, YAN F. Recent progress of inorganic perovskite solar cells. Energy & Environmental Science, 12, 2375-2405(2019).

    [7] LIANG J, WANG C, WANG Y et al. All-inorganic perovskite solar cells. Journal of American Chemical Society, 138, 15829-32(2016).

    [8] SHEN C, YE T, YANG P et al. All-inorganic perovskite solar cells: defect regulation and emerging applications in extreme environments. Adv Mater, 36, 2401498(2024).

    [9] SHAO Y C, XIAO Z G, BI C et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 5, 5784(2014).

    [10] UNGER E L, HOKE E T, BAILIE C D et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7, 3690-3698(2014).

    [11] CORREA-BAENA J P, SALIBA M, BUONASSISI T et al. Promises and challenges of perovskite solar cells. Science, 358, 739-744(2017).

    [12] SEO J, NOH J H, SEOK S I. Rational strategies for efficient perovskite solar cells. Accounts of Chemical Research, 49, 562-572(2016).

    [13] MILLER L M, COLEMAN J J. Metalorganic chemical vapor deposition. Critical Reviews in Solid State and Materials Sciences, 15, 1-26(1988).

    [14] LI X, BI D Q, YI C Y et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58-62(2016).

    [15] NIE W Y, TSAI H, ASADPOUR R et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347, 522-525(2015).

    [16] PALMSTRØM C J. Epitaxial heusler alloys: new materials for semiconductor spintronics. MRS Bulletin, 28, 725-728(2003).

    [17] PALMSTRØM C J. Epitaxy of dissimilar materials. Annual Review of Materials Science, 25, 389-415(1995).

    [18] RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 4, 257-268(2019).

    [19] HUANG M, RUOFF R S. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Accounts of Chemical Research, 53, 800-811(2020).

    [20] CHENG C W, SHIU K T, LI N et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nature Communications, 4, 1577(2013).

    [21] DAI P, TAN M, WU Y Y et al. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy. Journal of Crystal Growth, 413, 71-75(2015).

    [22] GOMYO A, SUZUKI T, KOBAYASHI K et al. Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band‐gap energy. Applied Physics Letters, 50, 673-675(1987).

    [23] BERTNESS K A, KURTZ S R, FRIEDMAN D J et al. 29.5%‐efficient GaInP/GaAs tandem solar cells. Applied Physics Letters, 65, 989-991(1994).

    [24] LI W, LAMMASNIEMI J, KAZANTSEV A B et al. GaInP/AlInP tunnel junction for GaInP/GaAstandem solar cells. Electronics Letters, 34, 406-407(1998).

    [25] LEE J, WU J, RYU J H et al. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small, 8, 1851-1856(2012).

    [26] KING R R, LAW D C, EDMONDSON K M et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Applied Physics Letters, 90, 183516(2007).

    [27] YANG T F, WANG X, ZHENG B Y et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano, 13, 7996-8003(2019).

    [28] PARROTT E S, PATEL J B, HAGHIGHIRAD A A et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. Nanoscale, 11, 14276-14284(2019).

    [29] HILT F, HOVISH M Q, ROLSTON N et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy & Environmental Science, 11, 2102-2113(2018).

    [30] MALI S S, PATIL J V, HONG C K. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. Nano Letters, 19, 6213-6220(2019).

    [31] YE S Y, RAO H X, ZHAO Z R et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. Journal of the American Chemical Society, 139, 7504-7512(2017).

    [32] QIAO H W, YANG S, WANG Y et al. A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor. Advanced Materials, 31(2019).

    [33] BARTEL C J, SUTTON C, GOLDSMITH B R et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2019).

    [34] WANG Y, WANG Y, DOHERTY T A S et al. Octahedral units in halide perovskites. Nature Reviews Chemistry, 9, 261-277(2025).

    [35] KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chemical Science, 5, 4712-4715(2014).

    [36] LI Z, YANG M J, PARK J S et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28, 284-292(2016).

    [37] KUMAH D P, NGAI J H, KORNBLUM L. Epitaxial oxides on semiconductors: from fundamentals to new devices. Advanced Functional Materials, 30, 1901597(2020).

    [38] ROYER L. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d’espèces différentes. Bulletin de la Société Française de Minéralogie, 51, 7-159(1928).

    [39] CHEN P, LUNT R R. Organic step edge driven heteroquasiepitaxial growth of organic multilayer films. Advanced Materials Interfaces, 3, 1600401(2016).

    [40] LUNT R R, SUN K, KRÖGER M et al. Ordered organic-organic multilayer growth. Physical Review B, 83(2011).

    [41] WANG L L, CHEN P, THONGPRONG N et al. Unlocking the single-domain epitaxy of halide perovskites. Advanced Materials Interfaces, 4, 1701003(2017).

    [42] WANG L L, CHEN P, KUTTIPILLAI P S et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 11, 32076-32083(2019).

    [43] WANG Y P, SUN X, CHEN Z Z et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Advanced Materials, 29, 1702643(2017).

    [44] CHEN J, MORROW D J, FU Y P et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). Journal of the American Chemical Society, 139, 13525-13532(2017).

    [45] WANG Y F, LI X Z, LIU P et al. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection. Journal of Semiconductors, 42, 112001(2021).

    [46] WANG Y L, JIA C C, FAN Z et al. Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures. Nano Letters, 21, 1454-1460(2021).

    [47] ABBASLI M, HIEULLE J, SCHRAGE J et al. Tin halide perovskite epitaxial films on gold surfaces: atomic structure and stability. Advanced Functional Materials, 34, 2403680(2024).

    [48] RIEGER J, KIßLINGER T, RAABGRUND A et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations. Physical Review Materials, 7(2023).

    [49] YUAN M, FENG J G, LI H et al. Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nature Nanotechnology, 20, 381-387(2025).

    [50] JIANG J, SUN X, CHEN X C et al. Publisher Correction: carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 10, 4783(2019).

    [51] ZHOU Y, YUAN B L, WEI H M et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 120, 112109(2022).

    [52] XING R F, SHI P, WU Z F et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications. ACS Applied Electronic Materials, 4, 1351-1358(2022).

    [53] CUI W Y, ZHOU Y, CHENG X M et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity. Applied Physics Letters, 125, 182102(2024).

    [54] SHAN Y S, CUI W Y, ZHOU Y et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors. Journal of Materials Chemistry C, 13, 9072-9082(2025).

    [55] YANG T B, JIN C, QU J T et al. Solution epitaxy of halide perovskite thin single crystals for stable transistors. ACS Applied Materials & Interfaces, 13, 37840-37848(2021).

    [56] LIU H J, SUN X, LIU J X et al. Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit. Science China Materials, 68, 561-570(2025).

    [57] DA B C, HERATH M D, WANG D W et al. High-voltage kV-class AlN metal-semiconductor field-effect transistors on single-crystal AlN substrates. Applied Physics Express, 17, 104002(2024).

    [58] JI Y J, KIM K S, KIM K H et al. A brief review of plasma enhanced atomic layer deposition of Si3N4. Applied Science and Convergence Technology, 28, 142-147(2019).

    [59] XU F, LI Y J, YUAN B L et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 129, 245303(2021).

    [60] MA X Y, UNIVERSITY W et al. Plasma sputtering halide perovskite for photovoltaic applications. ACS Materials Letters, 6, 5076-5092(2024).

    [61] YUAN B L, WEI H M, LI J W et al. Epitaxial growth of quasi-intrinsic CsPbBr3 film on a SrTiO3 substrate by pulsed laser deposition. ACS Applied Electronic Materials, 3, 5592-5600(2021).

    [62] JI L, HSU H Y, LEE J C et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Letters, 18, 994-1000(2018).

    [63] CHEN Y M, LEI Y S, LI Y H et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 577, 209-215(2020).

    [64] KELSO M V, MAHENDERKAR N K, CHEN Q Z et al. Spin coating epitaxial films. Science, 364, 166-169(2019).

    [65] LU C J, TANG L L. Comment on “Spin coating epitaxial films”. Science, 365(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yansu SHAN, Xingmu LI, Xia WANG, Dehua WU, Bingqiang CAO. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films[J]. Journal of Synthetic Crystals, 2025, 54(7): 1208

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 26, 2025

    Accepted: --

    Published Online: Aug. 28, 2025

    The Author Email: Bingqiang CAO (mse_caobq@ujn.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2025.0096

    Topics