Journal of Synthetic Crystals, Volume. 54, Issue 7, 1208(2025)
Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films
[1] PACCHIONI G. Highly efficient perovskite LEDs. Nature Reviews Materials, 6, 108(2021).
[2] ASSADI M K, BAKHODA S, SAIDUR R et al. Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 81, 2812-2822(2018).
[3] AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv Mater, 29, 1605242(2017).
[4] STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A et al. Inorganic and hybrid perovskite based laser devices: a review. Materials, 12, 859(2019).
[5] ZANATTA A R. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320(2022).
[6] TAI Q D, TANG K C, YAN F. Recent progress of inorganic perovskite solar cells. Energy & Environmental Science, 12, 2375-2405(2019).
[7] LIANG J, WANG C, WANG Y et al. All-inorganic perovskite solar cells. Journal of American Chemical Society, 138, 15829-32(2016).
[8] SHEN C, YE T, YANG P et al. All-inorganic perovskite solar cells: defect regulation and emerging applications in extreme environments. Adv Mater, 36, 2401498(2024).
[9] SHAO Y C, XIAO Z G, BI C et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 5, 5784(2014).
[10] UNGER E L, HOKE E T, BAILIE C D et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7, 3690-3698(2014).
[11] CORREA-BAENA J P, SALIBA M, BUONASSISI T et al. Promises and challenges of perovskite solar cells. Science, 358, 739-744(2017).
[12] SEO J, NOH J H, SEOK S I. Rational strategies for efficient perovskite solar cells. Accounts of Chemical Research, 49, 562-572(2016).
[13] MILLER L M, COLEMAN J J. Metalorganic chemical vapor deposition. Critical Reviews in Solid State and Materials Sciences, 15, 1-26(1988).
[14] LI X, BI D Q, YI C Y et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58-62(2016).
[15] NIE W Y, TSAI H, ASADPOUR R et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347, 522-525(2015).
[16] PALMSTRØM C J. Epitaxial heusler alloys: new materials for semiconductor spintronics. MRS Bulletin, 28, 725-728(2003).
[17] PALMSTRØM C J. Epitaxy of dissimilar materials. Annual Review of Materials Science, 25, 389-415(1995).
[18] RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 4, 257-268(2019).
[19] HUANG M, RUOFF R S. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates. Accounts of Chemical Research, 53, 800-811(2020).
[20] CHENG C W, SHIU K T, LI N et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nature Communications, 4, 1577(2013).
[21] DAI P, TAN M, WU Y Y et al. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy. Journal of Crystal Growth, 413, 71-75(2015).
[22] GOMYO A, SUZUKI T, KOBAYASHI K et al. Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band‐gap energy. Applied Physics Letters, 50, 673-675(1987).
[23] BERTNESS K A, KURTZ S R, FRIEDMAN D J et al. 29.5%‐efficient GaInP/GaAs tandem solar cells. Applied Physics Letters, 65, 989-991(1994).
[24] LI W, LAMMASNIEMI J, KAZANTSEV A B et al. GaInP/AlInP tunnel junction for GaInP/GaAstandem solar cells. Electronics Letters, 34, 406-407(1998).
[25] LEE J, WU J, RYU J H et al. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small, 8, 1851-1856(2012).
[26] KING R R, LAW D C, EDMONDSON K M et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Applied Physics Letters, 90, 183516(2007).
[27] YANG T F, WANG X, ZHENG B Y et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano, 13, 7996-8003(2019).
[28] PARROTT E S, PATEL J B, HAGHIGHIRAD A A et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. Nanoscale, 11, 14276-14284(2019).
[29] HILT F, HOVISH M Q, ROLSTON N et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy & Environmental Science, 11, 2102-2113(2018).
[30] MALI S S, PATIL J V, HONG C K. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. Nano Letters, 19, 6213-6220(2019).
[31] YE S Y, RAO H X, ZHAO Z R et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. Journal of the American Chemical Society, 139, 7504-7512(2017).
[32] QIAO H W, YANG S, WANG Y et al. A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor. Advanced Materials, 31(2019).
[33] BARTEL C J, SUTTON C, GOLDSMITH B R et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2019).
[34] WANG Y, WANG Y, DOHERTY T A S et al. Octahedral units in halide perovskites. Nature Reviews Chemistry, 9, 261-277(2025).
[35] KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chemical Science, 5, 4712-4715(2014).
[36] LI Z, YANG M J, PARK J S et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28, 284-292(2016).
[37] KUMAH D P, NGAI J H, KORNBLUM L. Epitaxial oxides on semiconductors: from fundamentals to new devices. Advanced Functional Materials, 30, 1901597(2020).
[38] ROYER L. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d’espèces différentes. Bulletin de la Société Française de Minéralogie, 51, 7-159(1928).
[39] CHEN P, LUNT R R. Organic step edge driven heteroquasiepitaxial growth of organic multilayer films. Advanced Materials Interfaces, 3, 1600401(2016).
[40] LUNT R R, SUN K, KRÖGER M et al. Ordered organic-organic multilayer growth. Physical Review B, 83(2011).
[41] WANG L L, CHEN P, THONGPRONG N et al. Unlocking the single-domain epitaxy of halide perovskites. Advanced Materials Interfaces, 4, 1701003(2017).
[42] WANG L L, CHEN P, KUTTIPILLAI P S et al. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 11, 32076-32083(2019).
[43] WANG Y P, SUN X, CHEN Z Z et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Advanced Materials, 29, 1702643(2017).
[44] CHEN J, MORROW D J, FU Y P et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). Journal of the American Chemical Society, 139, 13525-13532(2017).
[45] WANG Y F, LI X Z, LIU P et al. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection. Journal of Semiconductors, 42, 112001(2021).
[46] WANG Y L, JIA C C, FAN Z et al. Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures. Nano Letters, 21, 1454-1460(2021).
[47] ABBASLI M, HIEULLE J, SCHRAGE J et al. Tin halide perovskite epitaxial films on gold surfaces: atomic structure and stability. Advanced Functional Materials, 34, 2403680(2024).
[48] RIEGER J, KIßLINGER T, RAABGRUND A et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations. Physical Review Materials, 7(2023).
[49] YUAN M, FENG J G, LI H et al. Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nature Nanotechnology, 20, 381-387(2025).
[50] JIANG J, SUN X, CHEN X C et al. Publisher Correction: carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 10, 4783(2019).
[51] ZHOU Y, YUAN B L, WEI H M et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition. Applied Physics Letters, 120, 112109(2022).
[52] XING R F, SHI P, WU Z F et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications. ACS Applied Electronic Materials, 4, 1351-1358(2022).
[53] CUI W Y, ZHOU Y, CHENG X M et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity. Applied Physics Letters, 125, 182102(2024).
[54] SHAN Y S, CUI W Y, ZHOU Y et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors. Journal of Materials Chemistry C, 13, 9072-9082(2025).
[55] YANG T B, JIN C, QU J T et al. Solution epitaxy of halide perovskite thin single crystals for stable transistors. ACS Applied Materials & Interfaces, 13, 37840-37848(2021).
[56] LIU H J, SUN X, LIU J X et al. Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit. Science China Materials, 68, 561-570(2025).
[57] DA B C, HERATH M D, WANG D W et al. High-voltage kV-class AlN metal-semiconductor field-effect transistors on single-crystal AlN substrates. Applied Physics Express, 17, 104002(2024).
[58] JI Y J, KIM K S, KIM K H et al. A brief review of plasma enhanced atomic layer deposition of Si3N4. Applied Science and Convergence Technology, 28, 142-147(2019).
[59] XU F, LI Y J, YUAN B L et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering. Journal of Applied Physics, 129, 245303(2021).
[60] MA X Y, UNIVERSITY W et al. Plasma sputtering halide perovskite for photovoltaic applications. ACS Materials Letters, 6, 5076-5092(2024).
[61] YUAN B L, WEI H M, LI J W et al. Epitaxial growth of quasi-intrinsic CsPbBr3 film on a SrTiO3 substrate by pulsed laser deposition. ACS Applied Electronic Materials, 3, 5592-5600(2021).
[62] JI L, HSU H Y, LEE J C et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Letters, 18, 994-1000(2018).
[63] CHEN Y M, LEI Y S, LI Y H et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 577, 209-215(2020).
[64] KELSO M V, MAHENDERKAR N K, CHEN Q Z et al. Spin coating epitaxial films. Science, 364, 166-169(2019).
[65] LU C J, TANG L L. Comment on “Spin coating epitaxial films”. Science, 365(2019).
Get Citation
Copy Citation Text
Yansu SHAN, Xingmu LI, Xia WANG, Dehua WU, Bingqiang CAO. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films[J]. Journal of Synthetic Crystals, 2025, 54(7): 1208
Category:
Received: Apr. 26, 2025
Accepted: --
Published Online: Aug. 28, 2025
The Author Email: Bingqiang CAO (mse_caobq@ujn.edu.cn)