Acta Optica Sinica, Volume. 45, Issue 13, 1306013(2025)
Development of High-Speed Optical Fiber Communication Technology (Invited)
[3] Camera M, Olsson B E, Bruno G. Beyond 100 Gbit/s: system implications towards 400 G and 1[C], 1-15(2010).
[4] Zhou Y R, Smith K, Gilson M et al. Demonstration of real-time 400G single-carrier ultra-efficient 1.2 Tb/s superchannel over large aeff ultra-low loss terrestrial fiber of 150 km single span and 250 km (2×125 km spans) using only EDFA amplification[C], 1-3(2018).
[5] Wang D, Li Y B, Zhang D C et al. Ultra-low-loss and large-effective-area fiber for 100 Gbit/s and beyond 100 Gbit/s coherent long-haul terrestrial transmission systems[J]. Scientific Reports, 9, 17162(2019).
[9] Ge D W, Zuo M Q, Wang D et al. An operator’s perspective on future wideband transmission combined with fiber choice for ultra-high-speed long-haul optical communications[C], 1-4(2024).
[11] Kapron F P, Keck D B, Maurer R D. Radiation losses in glass optical waveguides[J]. Applied Physics Letters, 17, 423-425(1970).
[12] Maurer R D. Glass fibers for optical communications[J]. Proceedings of the IEEE, 61, 452-462(1973).
[13] Kaiser P. Spectral losses of unclad fibers made from high‐grade vitreous silica[J]. Applied Physics Letters, 23, 45-46(1973).
[14] Tasker G W, French W G. Low-loss optical waveguides with pure fused SiO2 cores[J]. Proceedings of the IEEE, 62, 1281-1282(1974).
[15] Horiguchi M, Osanai H. Spectral losses of low-OH-content optical fibres[J]. Electronics Letters, 12, 310-312(1976).
[17] Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 9, 271-283(1991).
[20] Zhu X F, de Freitas M M, Shi S Y et al. Ultra wideband dual-output thin film lithium niobate intensity modulator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 30, 9200113(2024).
[23] Cheng R, Yu M J, Shams-Ansari A et al. Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate[J]. Nature Communications, 15, 3921(2024).
[24] Cheng R, Ren X Y, Reimer C et al. Single-drive electro-optic frequency comb source on a photonic-wire-bonded thin-film lithium niobate platform[J]. Optics Letters, 49, 3504-3507(2024).
[26] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi Applied Research, 201, 253-283(2004).
[30] Hamaoka F, Minoguchi K, Sasai T et al. 3-Tb/s ultra-wideband (S, C, and L bands) single-mode fibre transmission over 40-km using >519 Gb/s/A PDM-128 QAM signals[C], 1-3(150).
[31] Frignac Y, Le Gac D, Lorences-Riesgo A et al. Record 158.4 Tb/s transmission over 2×60 km field SMF using S+C+L 18Thz-bandwidth lumped amplification[J]. IET Conference Proceedings, 550-553(2023).
[32] Hamaoka F, Nakamura M, Sasai T et al. 110.7-Tb/s single-mode-fiber transmission over 1040 km with high-symbol-rate 144-GBaud PDM-PCS-QAM signals[C], 1-3(2024).
[33] Hamaoka F, Nakamura M, Takahashi M et al. 7-Tb/s Triple-Band WDM Transmission using 124-Channel 144-GBaud Signals with SE of 9.33 b/s/Hz[C], Th3F.2-9(173).
[34] He Q Y, Ge D W, Luo M et al. 27-Tb/s capacity over 150-km in S+C+L band using 156-channel 115-GBaud signals with doped fiber amplification[C], Tu3E.2-28(150).
[35] Puttnam B J, Luís R S, Rademacher G et al. S-, C- and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification[J]. Optics Express, 30, 10011-10018(2022).
[36] Yang J Q, Sillekens E, Puttnam B J et al. Record 202.3 Tb/s transmission over field-deployed fibre using 15.6 THz S+C+L-bands[C], 39-42(2024).
[37] Hamaoka F, Ota M, Nakamura M et al. 2-THz S+C+L WDM inline-amplified 160-km transmission with highly rectangular waveband MUX/DEMUX[C], 51-54(19).
[38] Yang J Q, Buglia H, Sillekens E et al. Experimental validation of the closed-form GN model accounting for distributed Raman amplification in an S+C+L-band hybrid amplified long-haul transmission system[C], 67-70(2024).
[39] Kobayashi T, Shimizu S, Kawai A et al. C+L+U-band 14.85-THz WDM transmission over 80-km-span G.654.E fiber with hybrid PPLN-OPA/EDFA U-band lumped repeater using 144-GBaud PCS-QAM signals[C], Th4A.1-28(2024).
[40] Kimura K, Shimizu S, Kobayashi T et al. 101-Tb/s C+L+U-band transmission over 5×80-km NZ-DSF with closed-form-GN-model-based launch power optimisation[C], 71-74(2024).
[41] Puttnam B J, Luis R S, Huang Y et al. 301 Tb/s E, S, C+L-band transmission over 212 nm bandwidth with E-band bismuth-doped fiber amplifier and gain equalizer[J]. IET Conference Proceedings, 1674-1677(2023).
[42] ShimizuS., KobayashiT., AbeM. et al. 133-Tbps 1040-km (13×80 km) Lumped-Amplified Transmission Over 22 THz in S-to-U-Band Using Hybrid Multiband Repeater with PPLN-Based Optical Parametric Amplifiers and EDFAs[C], Th3B.2(2024).
[43] Soma D, Kato T, Beppu S et al. 25-THz O+S+C+L+U-band digital coherent DWDM transmission using a deployed fibre-optic cable[J]. IET Conference Proceedings, 1658-1661(2023).
[45] Puttnam B J, Luis R S, Phillips I et al. 339.1 Tb/s OESCLU-band transmission over 100 km SMF[C], 43-46(2024).
[46] Pedersen B, Dakss M L, Thompson B A et al. Experimental and theoretical analysis of efficient erbium-doped fiber power amplifiers[J]. IEEE Photonics Technology Letters, 3, 1085-1087(1991).
[47] Rapp L, Eiselt M. Optical amplifiers for multi‒band optical transmission systems[J]. Journal of Lightwave Technology, 40, 1579-1589(2022).
[48] Bjarklev A[M]. Optical fiber amplifiers: design and system applications(1993).
[49] Pedersen B, Miniscalco W J, Quimby R S. Optimization of Pr3+: ZBLAN fiber amplifiers[J]. IEEE Photonics Technology Letters, 4, 446-448(1992).
[50] Sanghera J, Shaw B, Cole B et al. Amplification by means of dysprosium doped low phonon energy glass waveguides[P].
[51] Wei K, Machewirth D P, Wenzel J et al. Spectroscopy of Dy3+ in Ge‒Ga‒S glass and its suitability for 13-μm fiber-optical amplifier applications[J]. Optics Letters, 19, 904-906(1994).
[52] Amarnath Reddy A, Chandra Sekhar M, Pradeesh K et al. Optical properties of Dy3+-doped sodium‒aluminum‒phosphate glasses[J]. Journal of Materials Science, 46, 2018-2023(2011).
[55] Jiang C. Modeling a broadband bismuth-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 79-84(2009).
[56] Shin J H, Jung M W, Lee J H. Theoretical modeling of high concentration bismuth-based erbium-doped fiber amplifier[J]. Korean Journal of Optics and Photonics, 21, 139-145(2010).
[58] Li W J, Eltes F, Berikaa E et al. Thin-film BTO-based MZMs for next-generation IMDD transceivers beyond 200 Gbps/λ[J]. Journal of Lightwave Technology, 42, 1143-1150(2024).
[59] Yu H, Guo N, Deng C G et al. Tuning the electro-optic properties of BaTiO3 epitaxial thin films via buffer layer-controlled polarization rotation paths[J]. Advanced Functional Materials, 34, 2315579(2024).
[62] Eltes F, Mai C, Caimi D et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform[J]. Journal of Lightwave Technology, 37, 1456-1462(2019).
[63] Chen G X, Liu L. High-performance electro-optical modulator based on thin-film lithium niobate (invited)[J]. Acta Optica Sinica, 44, 1513001(2024).
[64] Han C H, Wang H Y, Shu H W et al. Latest research progress in silicon-based modulators (invited)[J]. Acta Optica Sinica, 44, 1513017(2024).
[68] Benabid F, Roberts P J. Linear and nonlinear optical properties of hollow core photonic crystal fiber[J]. Journal of Modern Optics, 58, 87-124(2011).
[70] Mangan B J, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C]. 27, 3(2004).
[77] Wang Y Y, Ding W. Confinement loss in hollow-core negative curvature fiber: a multi-layered model[J]. Optics Express, 25, 33122-33133(2017).
[79] Belardi W, Knight J C. Hollow antiresonant fibers with reduced attenuation[J]. Optics Letters, 39, 1853-1856(2014).
[87] Ding W, Wang Y Y. Analytic model for light guidance in single-wall hollow-core anti-resonant fibers[J]. Optics Express, 22, 27242-27256(2014).
[88] Ding W, Wang Y Y. Semi-analytical model for hollow-core anti-resonant fibers[J]. Frontiers in Physics, 3, 16(2015).
[90] Gardner W B. Microbending loss in optical fibers[J]. Bell System Technical Journal, 54, 457-465(1975).
[91] Gloge D. Optical-fiber packaging and its influence on fiber straightness and loss[J]. Bell System Technical Journal, 54, 245-262(1975).
[93] Numkam Fokoua E, Michaud-Belleau V, Genest J et al. Theoretical analysis of backscattering in hollow-core antiresonant fibers[J]. APL Photonics, 6, 096106(2021).
[95] Adamu A I, Hassan M R A, Chen Y et al. 10.9 km hollow core double nested antiresonant nodeless fiber (DNANF) with 0.33 dB/km loss at 850 nm[C], M3J.1-28(2024).
[96] Li P, Chen G Q, Chu J et al. 15 km continuous length and low loss hollow core fiber in 1 um, C and L bands[C], 1752-1755(2024).
[97] Agrell E, Karlsson M, Poletti F et al. Roadmap on optical communications[J]. Journal of Optics, 26, 093001(2024).
[98] Gao S F, Sun Y Z, Chen H et al. Four-fold truncated double-nested anti-resonant hollow-core fiber for ultralow loss and robust single mode operation[C], JTh4A.5(1).
[101] Ge D W, Gao S F, Zuo M Q et al. Estimation of Kerr nonlinearity in an anti-resonant hollow-core fiber by high-order QAM transmission[C], 1-3(2023).
[103] Wang X C, Ge D W, Ding W et al. Hollow-core conjoined-tube fiber for penalty-free data transmission under offset launch conditions[J]. Optics Letters, 44, 2145-2148(2019).
[104] Sakr H, Bottrill K R H, Taengnoi N et al. Interband short reach data transmission in ultrawide bandwidth hollow core fiber[J]. Journal of Lightwave Technology, 38, 159-165(2020).
[105] Hong Y, Sakr H, Taengnoi N et al. Multi-band direct-detection transmission over an ultrawide bandwidth hollow-core NANF[J]. Journal of Lightwave Technology, 38, 2849-2857(2020).
[106] Nespola A, Sandoghchi S R, Hooper L et al. Ultra-long-haul WDM transmission in a reduced InterModal interference NANF hollow-core fiber[C], 1-3(2021).
[107] Ge D W, Gao S F, Zuo M Q et al. Nonlinear-penalty-free real-time 40×800 Gb/s DP-64QAM-PCS transmission with launch power of 28 dBm over a conjoined-tube hollow-core fiber[C], W4H.7-9(2023).
[110] Hong Y, Huang X, Jung Y et al. Wideband transmission in the 1-µm band based on a hollow-core fiber and wideband YDFA[C], W4D.5-9(2023).
[111] Li C, Liu Z C, Sun Y Z et al. C-band net 1.8 Tb/s (240Gb/s/λ×8λ) DWDM IM/DD transmission over 1.4 km AR-HCF with linear FFE only[C], Tu3H.6-28(2024).
[112] Ge D W, Xiong Y F, Liu S Y et al. Ultimate low-latency and low-footprint 50G PAM4 fronthaul utilizing AR-HCF and CDR-based SFP56 module[C], 1126-1129(2024).
[113] Yang C, Li C, Gong Y H et al. C+L-band 4 Tb/s (500 Gb/s/λ×8λ) WDM IM/DD optical interconnection over Anti-resonant hollow-core fiber enabled by ultra-high bandwidth TFLN modulator[C], 1785-1788(2024).
Get Citation
Copy Citation Text
Han Li, Yuqian Zhang, Mingqing Zuo, Dawei Ge, Yingying Wang, Wei Ding, Dong Wang, Liuyan Han, Dechao Zhang. Development of High-Speed Optical Fiber Communication Technology (Invited)[J]. Acta Optica Sinica, 2025, 45(13): 1306013
Category: Fiber Optics and Optical Communications
Received: Apr. 11, 2025
Accepted: May. 19, 2025
Published Online: Jul. 18, 2025
The Author Email: Han Li (lihan@chinamobile.com)
CSTR:32393.14.AOS250895