Acta Optica Sinica, Volume. 45, Issue 13, 1306013(2025)

Development of High-Speed Optical Fiber Communication Technology (Invited)

Han Li1、*, Yuqian Zhang1, Mingqing Zuo1, Dawei Ge1, Yingying Wang2, Wei Ding2, Dong Wang1, Liuyan Han1, and Dechao Zhang1
Author Affiliations
  • 1Department of Fundamental Network Technology, China Mobile Research Institute, Beijing 100053, China
  • 2Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, Guangdong , China
  • show less
    Figures & Tables(12)
    Key technological evolution milestones of solid-core optical fibers
    Landmark experimental results of ultra-high-speed and ultra-wide-spectrum optical communication systems. (a) S+C+L three-band transmission[34]; (b) C+L+U three-band transmission[39]; (c) E+S+C+L four-band transmission[41]; (d) O+E+S+C+L+U six-band transmission[44]
    Schematic of energy level transitions of important rare-earth ions and their absorption and emission cross-sections[47]. Energy level transition: (a) Er and Dy ions, (b) Pr ions, (c) Tm and Nd ions; absorption and emission cross-section: (d) Er ions, (e) Pr ions, (f) Tm ions, (g) Nd ions
    High-speed modulators based on different material platforms. (a) InP-based IQ modulator[18]; (b) LiNbO₃ IQ modulator[21]; (c) epitaxial chip of BaTiO₃ material[58]; (d) BaTiO₃ high-speed modulator[59]
    Various types of AR-HCF[73-84]. (a) Kagomé fiber; (b) hypocycloid-core Kagomé fiber; (c) single-tube fiber with nodes; (d) negative curvature fiber; (e) nodeless single-tube fiber; (f) conjoined-tube fiber; (g) 5-element nested nodeless antiresonant fiber (NANF-5); (h) effectively single-tube 6-element fiber; (i) lotus fiber; (j) hybrid cladding fiber; (k) ultra-low loss NANF-5; (l) 5-element double nested nodeless antiresonant fiber (DNANF-5)
    Structural evolution and loss reduction history of AR-HCF
    Cross-sectional structures and light guiding principles of solid-core single-mode optical fibers and AR-HCF
    Attenuation coefficient spectra of AR-HCF in various bands[94]
    Pilot deployment of hollow-core optical fibers by China Mobile in 2024
    Influence of absorption of CO₂/CO in C+L band and absorption of water vapor in S band on transmission performance of high-speed signals
    • Table 1. Recent researches on multi-band transmission

      View table

      Table 1. Recent researches on multi-band transmission

      PaperBand /THzBaudrate /GBaudCapacityTbit /sDistance /kmFibertypeAmplificationtype
      ECOC 201830S+C+L (13.6)45150.340G.652.DxDFA+DRA
      ECOC 202331S+C+L (18)70158.4120G.652.DxDFA
      OFC 202432S+C+L (18.3)144110.71040G.652.DxDFA+DRA
      OFC 202333S+C+L (18.6)144173.7101G.654.ExDFA+DRA
      OFC 202434S+C+L (19.5)115150.3150G.654.ExDFA
      OE35S+C+L (19.825)24.5244.354G.652.DxDFA+DRA
      ECOC 202436S+C+L (15.6)32202.339G.652.DxDFA
      ECOC 202437S+C+L (19.2)144166.5160G.652.DxDFA+DRA
      ECOC 202438S+C+L (12.4)32114.31065G.652.DxDFA+DRA
      OFC 202439C+L+U (14.85)144115.3800G.654.ExDFA+PPLN-OPA
      ECOC 202440C+L+U (14.85)144101400G.654.ExDFA+PPLN-OPA
      ECOC 202341E+S+C+L (27.425)24.530150G.652.DxDFA+DRA
      ECOC 202442S+C+L+U (22.05)144133.061040G.652.DxDFA+PPLN-OPA
      ECOC 202343O+S+C+L+U (25.05)24119.3545G.657.A1xDFA+DRA
      OFC 202444O+E+S+C+L+U (37.625)24.5402.250G.652.DxDFA+DRA
      ECOC 202445O+E+S+C+L+U (36)24.5339.1100G.652.DxDFA+DRA
    • Table 2. Records of attenuation coefficients of anti-resonant hollow-core optical fibers in various bands

      View table

      Table 2. Records of attenuation coefficients of anti-resonant hollow-core optical fibers in various bands

      Spectral range /nmYearTeamStructureAttenuationcoefficient /(dB/km)Attenuation coefficient of solid-core silica optical fiber /(dB/km)
      580‒8002024ORC at the University of Southampton, Microsoft[94]DNANF-50.9@700 nm~3@700 nm
      800‒9002024Microsoft[95]DNANF-5

      0.30±0.02@860 nm

      0.33@850 nm

      2.3@850 nm (OM4)
      900‒11002024FiberHome[96]NANF-50.25@1050 nm~0.6@1050 nm

      1250‒1350

      1450‒1650

      2024Microsoft、ORC at the Universityof Southampton[97]DNANF-5

      0.15±0.03@1310 nm

      0.08±0.03@1550 nm

      ~0.3@1310 nm

      0.1397@1566 nm

      1400‒17002024Linfiber Technology, Jinan University, China Mobile Research Institute[98]TDNANF-4≤0.1@1558 nm0.1397@1566 nm
      1450‒17002021ORC at the University of Southampton, Lumenisity[99]NANF-50.22@1625 nm~0.2@1625 nm
      1950‒22002022Beijing University of Technology[100]NANF-50.85@2000 nm
    Tools

    Get Citation

    Copy Citation Text

    Han Li, Yuqian Zhang, Mingqing Zuo, Dawei Ge, Yingying Wang, Wei Ding, Dong Wang, Liuyan Han, Dechao Zhang. Development of High-Speed Optical Fiber Communication Technology (Invited)[J]. Acta Optica Sinica, 2025, 45(13): 1306013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Apr. 11, 2025

    Accepted: May. 19, 2025

    Published Online: Jul. 18, 2025

    The Author Email: Han Li (lihan@chinamobile.com)

    DOI:10.3788/AOS250895

    CSTR:32393.14.AOS250895

    Topics