Acta Optica Sinica, Volume. 45, Issue 13, 1306013(2025)
Development of High-Speed Optical Fiber Communication Technology (Invited)
Fig. 3. Schematic of energy level transitions of important rare-earth ions and their absorption and emission cross-sections[47]. Energy level transition: (a) Er and Dy ions, (b) Pr ions, (c) Tm and Nd ions; absorption and emission cross-section: (d) Er ions, (e) Pr ions, (f) Tm ions, (g) Nd ions
Fig. 5. Various types of AR-HCF[73-84]. (a) Kagomé fiber; (b) hypocycloid-core Kagomé fiber; (c) single-tube fiber with nodes; (d) negative curvature fiber; (e) nodeless single-tube fiber; (f) conjoined-tube fiber; (g) 5-element nested nodeless antiresonant fiber (NANF-5); (h) effectively single-tube 6-element fiber; (i) lotus fiber; (j) hybrid cladding fiber; (k) ultra-low loss NANF-5; (l) 5-element double nested nodeless antiresonant fiber (DNANF-5)
Fig. 7. Cross-sectional structures and light guiding principles of solid-core single-mode optical fibers and AR-HCF
Fig. 10. Influence of absorption of CO₂/CO in C+L band and absorption of water vapor in S band on transmission performance of high-speed signals
|
|
Get Citation
Copy Citation Text
Han Li, Yuqian Zhang, Mingqing Zuo, Dawei Ge, Yingying Wang, Wei Ding, Dong Wang, Liuyan Han, Dechao Zhang. Development of High-Speed Optical Fiber Communication Technology (Invited)[J]. Acta Optica Sinica, 2025, 45(13): 1306013
Category: Fiber Optics and Optical Communications
Received: Apr. 11, 2025
Accepted: May. 19, 2025
Published Online: Jul. 18, 2025
The Author Email: Han Li (lihan@chinamobile.com)
CSTR:32393.14.AOS250895