Acta Optica Sinica, Volume. 43, Issue 22, 2204002(2023)

Infrared Detectors of High Carrier Mobility Colloidal Quantum Dots

Xiaomeng Xue1, Haifei Ma1,2, Qun Hao1,2、**, Xin Tang1,2, and Menglu Chen1,2、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, Zhejiang , China
  • show less
    References(44)

    [1] de Cumis M S, Viciani S, Borri S et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring[J]. Optics Express, 22, 28222-28231(2014).

    [2] Song Z Z, Yang J W, Zhang D F et al. Low-altitude sea surface infrared object detection based on unsupervised domain adaptation[J]. Acta Optica Sinica, 42, 0415001(2022).

    [3] Wang H, Luo J J, Bai Y. Optics system design of the middle-wave infrared camera for spatial non-cooperative targets[J]. Acta Optica Sinica, 32, s122001(2012).

    [4] Xie J H, Huang S C, Wei D Z et al. Detectability analysis of air-space infrared detection system for UAV swarm[J]. Acta Optica Sinica, 42, 1812002(2022).

    [5] Madejová J. FTIR techniques in clay mineral studies[J]. Vibrational Spectroscopy, 31, 1-10(2003).

    [6] Rogalski A. Toward third generation HgCdTe infrared detectors[J]. Journal of Alloys and Compounds, 371, 53-57(2004).

    [7] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 105, 091101(2009).

    [8] González A, Fang Z J, Socarras Y et al. Pedestrian detection at day/night time with visible and FIR cameras: a comparison[J]. Sensors, 16, 820(2016).

    [9] Velicu S, Grein C H, Emelie P Y et al. MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements[J]. Journal of Electronic Materials, 39, 873-881(2010).

    [10] Cervera C, Baier N, Gravrand O et al. Low-dark current p-on-n MCT detector in long and very long-wavelength infrared[J]. Proceedings of SPIE, 9451, 945129(2015).

    [11] Hoogeveen R W M, van der A R J, Goede A P H. Extended wavelength InGaAs infrared (1.0-2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere[J]. Infrared Physics & Technology, 42, 1-16(2001).

    [12] Sarusi G. QWIP or other alternative for third generation infrared systems[J]. Infrared Physics & Technology, 44, 439-444(2003).

    [13] García de Arquer F P, Talapin D V, Klimov V I et al. Semiconductor quantum dots: technological progress and future challenges[J]. Science, 373, eaaz8541(2021).

    [14] Lu H P, Carroll G M, Neale N R et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 13, 939-953(2019).

    [15] Keuleyan S, Lhuillier E, Brajuskovic V et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 5, 489-493(2011).

    [16] Chen M L, Lan X Z, Tang X et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 6, 2358-2365(2019).

    [17] Zhu B Q, Chen M Y, Zhu Q et al. Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots[J]. Advanced Materials Technologies, 4, 1900354(2019).

    [18] Konstantatos G, Badioli M, Gaudreau L et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 7, 363-368(2012).

    [19] Dong Y F, Chen M Y, Yiu W K et al. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 nm at room temperature[J]. Advanced Science, 7, 2000068(2020).

    [20] Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 107, 253104(2015).

    [21] Ackerman M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 12, 7264-7271(2018).

    [22] Hafiz S B, Al Mahfuz M M, Lee S et al. Midwavelength infrared p-n heterojunction diodes based on intraband colloidal quantum dots[J]. ACS Applied Materials & Interfaces, 13, 49043-49049(2021).

    [23] Jagtap A, Martinez B, Goubet N et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 5, 4569-4576(2018).

    [24] Rastogi P, Izquierdo E, Gréboval C et al. Extended short-wave photodiode based on CdSe/HgTe/Ag2Te stack with high internal efficiency[J]. The Journal of Physical Chemistry C, 126, 13720-13728(2022).

    [25] Martinez B, Ramade J, Livache C et al. HgTe nanocrystal inks for extended short-wave infrared detection[J]. Advanced Optical Materials, 7, 1900348(2019).

    [26] Chen M L, Hao Q, Luo Y N et al. Mid-infrared intraband photodetector via high carrier mobility HgSe colloidal quantum dots[J]. ACS Nano, 16, 11027-11035(2022).

    [27] Tang X, Ackerman M M, Chen M L et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 13, 277-282(2019).

    [28] Gréboval C, Darson D, Parahyba V et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging[J]. Nanoscale, 14, 9359-9368(2022).

    [29] Zhang S, Bi C, Qin T L et al. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots[J]. ACS Photonics, 10, 673-682(2023).

    [30] Wang C H, Cai J H, Ye Y Y et al. Full-visible-spectrum perovskite quantum dots by anion exchange resin assisted synthesis[J]. Nanophotonics, 11, 1355-1366(2022).

    [31] Cai J H, Wang C H, Hu X P et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite[J]. Nano Research, 15, 6466-6476(2022).

    [32] Chen M L, Xue X M, Qin T L et al. Universal homojunction design for colloidal quantum dot infrared photodetectors[J]. Advanced Materials Technologies, 8, 2300315(2023).

    [33] Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands[J]. Science, 324, 1417-1420(2009).

    [34] Tang J, Kemp K W, Hoogland S et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J]. Nature Materials, 10, 765-771(2011).

    [35] Nag A, Kovalenko M V, Lee J S et al. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands[J]. Journal of the American Chemical Society, 133, 10612-10620(2011).

    [36] Lan X Z, Chen M L, Hudson M H et al. Quantum dot solids showing state-resolved band-like transport[J]. Nature Materials, 19, 323-329(2020).

    [37] Xue X M, Chen M L, Luo Y N et al. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction[J]. Light: Science & Applications, 12, 2(2023).

    [38] Chen M L, Lan X Z, Hudson M H et al. Magnetoresistance of high mobility HgTe quantum dot films with controlled charging[J]. Journal of Materials Chemistry C, 10, 13771-13777(2022).

    [39] Deng Z Y, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 8, 11707-11714(2014).

    [40] Jeong K S, Deng Z Y, Keuleyan S et al. Air-stable n-doped colloidal HgS quantum dots[J]. The Journal of Physical Chemistry Letters, 5, 1139-1143(2014).

    [41] Kroupa D M, Vörös M, Brawand N P et al. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification[J]. Nature Communications, 8, 15257(2017).

    [42] Chen M L, Guyot-Sionnest P. Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films[J]. ACS Nano, 11, 4165-4173(2017).

    [43] Park Y, Choong V, Gao Y et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy[J]. Applied Physics Letters, 68, 2699-2701(1996).

    [44] Ackerman M M, Chen M L, Guyot-Sionnest P. HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection[J]. Applied Physics Letters, 116, 083502(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiaomeng Xue, Haifei Ma, Qun Hao, Xin Tang, Menglu Chen. Infrared Detectors of High Carrier Mobility Colloidal Quantum Dots[J]. Acta Optica Sinica, 2023, 43(22): 2204002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Jul. 3, 2023

    Accepted: Sep. 6, 2023

    Published Online: Nov. 20, 2023

    The Author Email: Hao Qun (qhao@bit.edu.cn), Chen Menglu (menglu@bit.edu.cn)

    DOI:10.3788/AOS231215

    Topics