Journal of Infrared and Millimeter Waves, Volume. 44, Issue 3, 371(2025)

Advances in integrated polarization detectors with innovative features

Yong-Hao BU1,2, Jing ZHOU1,2、*, Jie DENG1,2, Ruo-Wen WANG1,2, Tao YE1,2, Meng-Die SHI1,2, Jun-Wei HUANG1,2, Yu-Jie ZHANG1,2, Jun NING1,2, Wei LU1,2, and Xiao-Shuang CHEN1,2、**
Author Affiliations
  • 1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(60)

    [1] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [2] Zhang L, Zhou C, Liu B et al. Real- time machine learning–enhanced hyperspectro- polarimetric imaging via an encoding metasurface[J]. Science Advances, 10, eadp5192(2024).

    [3] Kuang Y, Wang S, Mo B et al. Palm vein imaging using a polarization-selective metalens with wide field-of-view and extended depth-of-field[J]. NPJ Nanophotonics, 1, 24(2024).

    [4] Zaidi A, Rubin N A, Meretska M L et al. Metasurface-enabled single-shot and complete Mueller matrix imaging[J]. Nature Photonics, 18, 704-712(2024).

    [5] Togan E, Chu Y, Trifonov A S et al. Quantum entanglement between an optical photon and a solid-state spin qubit[J]. Nature, 466, 730-734(2010).

    [6] Greve K D, Yu L, McMahon P L et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength[J]. Nature, 491, 421-425(2012).

    [7] Rosskopf M, Mohr T, Elsäßer W. Ghost polarization communication[J]. Physical Review Applied, 13, 034062(2020).

    [8] Han Y, Li G. Coherent optical communication using polarization multiple-input-multiple-output[J]. Optics Express, 13, 7527-7534(2005).

    [9] VanWiggeren, G D, Roy R. Communication with dynamically fluctuating states of light polarization[J]. Physical review letters, 88, 097903(2002).

    [10] Gaiarin S, Perego A M, da Silva E P et al. Dual-polarization nonlinear Fourier transform-based optical communication system[J]. Optica, 5, 263(2018).

    [11] Liu J, Zhang D, Yu D et al. Machine learning powered ellipsometry[J]. Light: Science & Applications, 10, 55(2021).

    [12] Backer A S, Biebricher A S, King G A et al. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA[J]. Science Advances, 5, eaav1083(2019).

    [13] Dong P, Zong C, Dagher Z et al. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane[J]. Science Advances, 7, eabd5230(2021).

    [14] He C, He H, Chang J et al. Polarisation optics for biomedical and clinical applications: A review[J]. Light: Science & Applications, 10, 194(2021).

    [15] Lu J, Xue Y, Bernardino K et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order[J]. Science, 371, 1368-1374(2021).

    [16] Bu Y, Ren X, Zhou J et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination[J]. Light: Science & Applications, 12, 176(2023).

    [17] Deng J, Shi M, Liu X et al. An on-chip full-Stokes polarimeter based on optoelectronic polarization eigenvectors[J]. Nature Electronics, 7, 1004-1014(2024).

    [18] Li L, Wang J, Kang L et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector[J]. ACS Nano, 14, 16634-16642(2020).

    [19] Fang C, Li J, Zhou B et al. Self-powered filterless on-chip full-stokes polarimeter[J]. Nano Letters, 21, 6156-6162(2021).

    [20] Andreou A G, Kalayjian Z K. Polarization imaging: principles and integrated polarimeters[J]. IEEE Sensors Journal, 2, 566-576(2002).

    [21] Tyo J S, Goldstein D L, Chenault D B et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied optics, 45, 5453-5469(2005).

    [22] Zhou J, Deng J, Shi M et al. Cavity coupled plasmonic resonator enhanced infrared detectors[J]. Applied Physics Letters, 119, 160504(2021).

    [23] Wei J, Xu C, Dong B et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 15, 614-621(2021).

    [24] Wei J, Chen Y, Li Y et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 17, 171-178(2022).

    [25] Dai M, Wang C, Qiang B et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity[J]. Nature Communications, 14, 3421(2023).

    [26] Dai X, Yu Y, Ye T et al. Dynamically reconfigurable on-chip polarimeters based on nanoantenna enabled polarization dependent optoelectronic computing[J]. Nano Letters, 24, 983-992(2024).

    [27] Zhao S, Wu J, Jin K et al. Highly polarized and fast photoresponse of black phosphorus‐inse vertical p-n heterojunctions[J]. Advanced Functional Materials, 28, 1802011(2018).

    [28] Yu Y, Dai Z, Guan H et al. Blackbody‐sensitive uncooled infrared detector with ultra‐broadband and ultrafast photoresponse based on Te/WTe2 heterostructure[J]. Advanced Optical Materials, 12, 2400776(2024).

    [29] Dai Z, Yu Y, Guan H et al. Room‐temperature blackbody‐sensitive photodetector with visible‐to‐long‐wavelength‐infrared photoresponse and ultrafast speed based on a Te/PtSe2 heterostructure[J]. Advanced Electronic Materials, 2400268(2024).

    [30] Bai R, Xiong T, Zhou J et al. Polarization‐sensitive and wide‐spectrum photovoltaic detector based on quasi‐1D ZrGeTe4 nanoribbon[J]. InfoMat, 4, e12258(2021).

    [31] Ye L, Wang P, Luo W et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 37, 53-60(2017).

    [32] Castilla S, Vangelidis I, Pusapati V et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene[J]. Nature Communications, 11, 4872(2020).

    [33] Yuan H, Liu X, Afshinmanesh F et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 10, 707-713(2015).

    [34] Chen Y, Tan T, Wang Z et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection[J]. Science Advances, 8, eabq1781(2022).

    [35] Wei J, Li Y, Wang L et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 11, 6404(2020).

    [36] Zhang G, Lyu X, Qin Y et al. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures[J]. Light: Science & Applications, 13, 275(2024).

    [37] Li D, Li Z, Sun Y et al. In‐sublattice carrier transition enabled polarimetric photodetectors with reconfigurable polarity transition[J]. Advanced Materials, 36, 2407010(2024).

    [38] Wang H, Li Y, Gao P et al. Polarization‐and gate‐tunable optoelectronic reverse in 2D semimetal/semiconductor photovoltaic heterostructure[J]. Advanced Materials, 36, 2309371(2023).

    [39] Wu S, Deng J, Wang X et al. Polarization photodetectors with configurable polarity transition enabled by programmable ferroelectric-doping patterns[J]. Nature Communications, 15, 8743(2024).

    [40] Shen J, Zhu T, Zhou J et al. High-discrimination circular polarization detection based on dielectric-metal-hybrid chiral metamirror integrated quantum well infrared photodetectors[J]. Sensors, 23, 168(2022).

    [41] Dai M, Wang C, Qiang B et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection[J]. Nature Communications, 13, 4560(2022).

    [42] Guo S, Zhang D, Zhou J et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities[J]. Carbon, 170, 49-58(2020).

    [43] Zhang D, Zhou J, Liu C et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors[J]. Journal of Applied Physics, 126, 074301(2019).

    [44] Peng J, Cumming B P, Gu M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector[J]. Optics letters, 44, 2998-3001(2019).

    [45] Li F, Chu Z, Zhou J et al. Compact on-chip THz circular polarization detectors with high discrimination based on chiral plasmonic antennas[J]. Optical Materials Express, 13, 3330-3341(2023).

    [46] Wu S, Chen Y, Wang X et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains[J]. Nature Communications, 13, 3198(2022).

    [47] Xie J, Ren Z, Wei J et al. Zero‐bias long‐wave infrared nanoantenna‐mediated graphene photodetector for polarimetric and spectroscopic sensing[J]. Advanced Optical Materials, 11, 2202867(2023).

    [48] Lu F, Lee J, Jiang A et al. Thermopile detector of light ellipticity[J]. Nature Communications, 7, 12994(2016).

    [49] Thomaschewski M, Yang Y, Wolff C et al. On-chip detection of optical spin-orbit interactions in plasmonic nanocircuits[J]. Nano Letters, 19, 1166-1171(2019).

    [50] Zuo J, Bai J, Choi S et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor[J]. Light: Science & Applications, 12, 218(2023).

    [51] Arbabi E, Kamali S M, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [52] Sun C, Sun D, Bo Y et al. Fabrication and performance analysis of infrared InGaAs polarimetric detector with complete coverage of superpixel-structured grating[J]. Infrared Physics & Technology, 123, 104066(2022).

    [53] Feng B, Shi Z, Liu H et al. Polarized-pixel performance model for DoFP polarimeter[J]. Journal of Optics, 20, 065703(2018).

    [54] Ma J, Fang C, Liang L et al. Full‐stokes polarimeter based on chiral perovskites with chirality and large optical anisotropy[J]. Small, 17, 2103855(2021).

    [55] Ma C, Yuan S, Cheung P et al. Intelligent infrared sensing enabled by tunable moire quantum geometry[J]. Nature, 604, 266-272(2022).

    [56] Jiang H, Chen Y, Guo W et al. Metasurface-enabled broadband multidimensional photodetectors[J]. Nature Communications, 15, 8347(2024).

    [57] Wang F, Zhu S, Chen W et al. Multidimensional detection enabled by twisted black arsenic–phosphorus homojunctions[J]. Nature nanotechnology, 19, 455-462(2024).

    [58] Zhang S, Jiao H, Chen Y et al. Multi-dimensional optical information acquisition based on a misaligned unipolar barrier photodetector[J]. Nature Communications, 15, 7071(2024).

    [59] Fan Q, Xu W, Hu X et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field[J]. Nature Communications, 13, 2130(2022).

    [60] Fan Y, Huang W, Zhu F et al. Dispersion-assisted high-dimensional photodetector[J]. Nature, 630, 77-83(2024).

    Tools

    Get Citation

    Copy Citation Text

    Yong-Hao BU, Jing ZHOU, Jie DENG, Ruo-Wen WANG, Tao YE, Meng-Die SHI, Jun-Wei HUANG, Yu-Jie ZHANG, Jun NING, Wei LU, Xiao-Shuang CHEN. Advances in integrated polarization detectors with innovative features[J]. Journal of Infrared and Millimeter Waves, 2025, 44(3): 371

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Physics, Materials and Devices

    Received: Feb. 13, 2025

    Accepted: --

    Published Online: Jul. 9, 2025

    The Author Email: Jing ZHOU (jzhou@mail.sitp.ac.cn), Xiao-Shuang CHEN (xschen@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2025.03.007

    Topics