Chinese Journal of Lasers, Volume. 49, Issue 5, 0507102(2022)
Recent Progress in Near-Infrared-Ⅱ Fluorescence Imaging Probes for Fluorescence Surgical Navigation
[1] Sung H, Ferlay J, Siegel R L et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 71, 209-249(2021).
[2] Moran M S, Schnitt S J, Giuliano A E et al. Society of Surgical Oncology-American Society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and Ⅱ invasive breast cancer[J]. Annals of Surgical Oncology, 21, 704-716(2014).
[3] de Carvalho A C, Kowalski L P, Campos A H J F M et al. Clinical significance of molecular alterations in histologically negative surgical margins of head and neck cancer patients[J]. Oral Oncology, 48, 240-248(2012).
[4] Aliperti L A, Predina J D, Vachani A et al. Local and systemic recurrence is the achilles heel of cancer surgery[J]. Annals of Surgical Oncology, 18, 603-607(2011).
[5] Vahrmeijer A L, Hutteman M, van der Vorst J R et al. Image-guided cancer surgery using near-infrared fluorescence[J]. Nature Reviews Clinical Oncology, 10, 507-518(2013).
[6] Hameed S, Dai Z. Near-infrared fluorescence probes for surgical navigation[J]. Materials Today Chemistry, 10, 90-103(2018).
[7] van Beurden F, van Willigen D M, Vojnovic B et al. Multi-wavelength fluorescence in image-guided surgery, clinical feasibility and future perspectives[J]. Molecular Imaging, 19, 1536012120962333(2020).
[8] Ni X, Zhang X Y, Duan X C et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery[J]. Nano Letters, 19, 318-330(2019).
[9] Chen T, Su L C, Ge X G et al. Dual activated NIR-Ⅱ fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies[J]. Nano Research, 13, 3268-3277(2020).
[10] Takeuchi M, Sugie T, Abdelazeem K et al. Lymphatic mapping with fluorescence navigation using indocyanine green and axillary surgery in patients with primary breast cancer[J]. The Breast Journal, 18, 535-541(2012).
[11] Takada M, Takeuchi M, Suzuki E et al. Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence[J]. Breast Cancer, 25, 650-655(2018).
[12] Kim D W, Jeong B, Shin I H et al. Sentinel node navigation surgery using near-infrared indocyanine green fluorescence in early gastric cancer[J]. Surgical Endoscopy, 33, 1235-1243(2019).
[13] Kim M, Son S Y, Cui L H et al. Real-time vessel navigation using indocyanine green fluorescence during robotic or laparoscopic gastrectomy for gastric cancer[J]. Journal of Gastric Cancer, 17, 145-153(2017).
[14] Kokudo N, Ishizawa T. Clinical application of fluorescence imaging of liver cancer using indocyanine green[J]. Liver Cancer, 1, 15-21(2012).
[15] Nishino H, Hatano E, Seo S et al. Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence: development of the novel medical imaging projection system[J]. Annals of Surgery, 267, 1134-1140(2018).
[16] Yahata H, Kobayashi H, Sonoda K et al. Prognostic outcome and complications of sentinel lymph node navigation surgery for early-stage cervical cancer[J]. International Journal of Clinical Oncology, 23, 1167-1172(2018).
[17] Xiao S Y, Zhang J, Zhu Z Q et al. Application of fluorescein sodium in breast cancer brain-metastasis surgery[J]. Cancer Management and Research, 10, 4325-4331(2018).
[18] van Manen L, Handgraaf H J M, Diana M et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery[J]. Journal of Surgical Oncology, 118, 283-300(2018).
[19] van der Vorst J R, Vahrmeijer A L, Hutteman M et al. Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue[J]. World Journal of Gastrointestinal Surgery, 4, 180-184(2012).
[20] Schucht P, Beck J, Abu-Isa J et al. Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping[J]. Neurosurgery, 71, 927-936(2012).
[21] Isomoto H, Nanashima A, Senoo T et al. In vivo fluorescence navigation of gastric and upper gastrointestinal tumors by 5-aminolevulinic acid mediated photodynamic diagnosis with a laser-equipped video image endoscope[J]. Photodiagnosis and Photodynamic Therapy, 12, 201-208(2015).
[22] Kusano M, Tajima Y, Yamazaki K et al. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer[J]. Digestive Surgery, 25, 103-108(2008).
[23] Hirche C, Mohr Z, Kneif S et al. Ultrastaging of colon cancer by sentinel node biopsy using fluorescence navigation with indocyanine green[J]. International Journal of Colorectal Disease, 27, 319-324(2012).
[24] Zhang P, Luo H L, Zhu W et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging[J]. Surgical Endoscopy, 34, 3449-3459(2020).
[25] Shi Y B, Yuan W, Liu Q Y et al. Development of polyene-bridged hybrid rhodamine fluorophores for high-resolution NIR-Ⅱ imaging[J]. ACS Materials Letters, 1, 418-424(2019).
[26] Lei Z H, Sun C X, Pei P et al. Stable, wavelength-tunable fluorescent dyes in the NIR-Ⅱ region for in vivo high-contrast bioimaging and multiplexed biosensing[J]. Angewandte Chemie, 58, 8166-8171(2019).
[27] Chi C W, Du Y, Ye J Z et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology[J]. Theranostics, 4, 1072-1084(2014).
[28] Fengler J. Near-infrared fluorescence laparoscopy: technical description of PINPOINT® a novel and commercially available system[J]. Colorectal Disease, 17, 3-6(2015).
[29] Gurtner G C, Jones G E, Neligan P C et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use[J]. Annals of Surgical Innovation and Research, 7, 1(2013).
[30] Guo J H, Gao Y S, Li H Z et al. Hemodynamic assessment with SPY-indocyanine green angiography in expansion period: a study for expansion capsule pressure optimization[J]. The Journal of Craniofacial Surgery, 29, 578-583(2018).
[31] Muallem M Z, Sayasneh A, Armbrust R et al. Sentinel lymph node staging with indocyanine green for patients with cervical cancer: the safety and feasibility of open approach using SPY-PHI technique[J]. Journal of Clinical Medicine, 10, 4849(2021).
[32] He K S, Hong X P, Chi C W et al. A new method of near-infrared fluorescence image-guided hepatectomy for patients with hepatolithiasis: a randomized controlled trial[J]. Surgical Endoscopy, 34, 4975-4982(2020).
[33] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).
[34] Schebesch K M, Brawanski A, Hohenberger C et al. Fluorescein sodium-guided surgery of malignant brain tumors: history, current concepts, and future project[J]. Turkish Neurosurgery, 26, 185-194(2016).
[35] Dhawan R, Chaney M A. Anesthetic management and hemodynamic management[M]. Raman J. Management of heart failure, 257-268(2016).
[36] Almarhaby A M, Lees J E, Bugby S L et al. Characterisation of a near-infrared (NIR) fluorescence imaging systems intended for hybrid gamma-NIR fluorescence image guided surgery[J]. Journal of Instrumentation, 14, P07007(2019).
[37] Ishizawa T, Fukushima N, Shibahara J et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 115, 2491-2504(2009).
[38] Mieog J S D, Troyan S L, Hutteman M et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer[J]. Annals of Surgical Oncology, 18, 2483-2491(2011).
[39] Shimada Y, Okumura T, Nagata T et al. Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy[J]. Esophagus: Official Journal of the Japan Esophageal Society, 8, 259-266(2011).
[40] Charalampaki P, Nakamura M, Athanasopoulos D et al. Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery[J]. Frontiers in Oncology, 9, 583(2019).
[41] Franz M, Arend J, Wolff S et al. Tumor visualization and fluorescence angiography with indocyanine green (ICG) in laparoscopic and robotic hepatobiliary surgery-valuation of early adopters from Germany[J]. Innovative Surgical Sciences, 6, 59-66(2021).
[42] Carr J A, Franke D, Caram J R et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 4465-4470(2018).
[43] Zhu S, Hu Z, Tian R et al. Repurposing cyanine NIR-Ⅰ dyes accelerates clinical translation of near-infrared-Ⅱ (NIR-Ⅱ) bioimaging[J]. Advanced Materials, 30, 1802546(2018).
[44] Williams C G. XXVI.: researches on chinoline and its homologues[J]. Transactions of the Royal Society of Edinburgh, 21, 377-401(1857).
[45] Shindy H A. Fundamentals in the chemistry of cyanine dyes: a review[J]. Dyes and Pigments, 145, 505-513(2017).
[46] Constantin T P, Silva G L, Robertson K L et al. Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules[J]. Organic Letters, 10, 1561-1564(2008).
[47] Petty J T, Bordelon J A, Robertson M E. Thermodynamic characterization of the association of cyanine dyes with DNA[J]. The Journal of Physical Chemistry B, 104, 7221-7227(2000).
[48] Sun W, Guo S G, Hu C et al. Recent development of chemosensors based on cyanine platforms[J]. Chemical Reviews, 116, 7768-7817(2016).
[49] Huang F, Li Y H, Liu J L et al. Intraperitoneal injection of cyanine-based nanomicelles for enhanced near-infrared fluorescence imaging and surgical navigation in abdominal tumors[J]. ACS Applied Bio Materials, 4, 5695-5706(2021).
[50] Wang P Y, Wang X D, Luo Q et al. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy[J]. Theranostics, 9, 369-380(2019).
[51] Li B H, Lu L F, Zhao M Y et al. An efficient 1064 nm NIR-Ⅱ excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angewandte Chemie, 57, 7483-7487(2018).
[52] Cosco E D, Spearman A L, Ramakrishnan S et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time[J]. Nature Chemistry, 12, 1123-1130(2020).
[53] Qian G, Dai B, Luo M et al. Band gap tunable, donor-acceptor-donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence[J]. Chemistry of Materials, 20, 6208-6216(2008).
[54] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-Ⅱ imaging[J]. Nature Materials, 15, 235-242(2016).
[55] Zhang X D, Wang H, Antaris A L et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore[J]. Advanced Materials, 28, 6872-6879(2016).
[56] Fang Y, Shang J Z, Liu D K et al. Design, synthesis, and application of a small molecular NIR-Ⅱ fluorophore with maximal emission beyond 1200 nm[J]. Journal of the American Chemical Society, 142, 15271-15275(2020).
[57] Li J C, Pu K Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation[J]. Chemical Society Reviews, 48, 38-71(2019).
[58] Lyu Y, Xie C, Chechetka S A et al. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons[J]. Journal of the American Chemical Society, 138, 9049-9052(2016).
[59] Cao Z Y, Feng L Z, Zhang G B et al. Semiconducting polymer-based nanoparticles with strong absorbance in NIR-Ⅱ window for in vivo photothermal therapy and photoacoustic imaging[J]. Biomaterials, 155, 103-111(2018).
[60] Liang G H, Xing D. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers, 45, 0207020(2018).
[61] Hong G S, Zou Y P, Antaris A L et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nature Communications, 5, 4206(2014).
[62] Liu Y, Liu J F, Chen D D et al. Quinoxaline-based semiconducting polymer dots for in vivo NIR-Ⅱ fluorescence imaging[J]. Macromolecules, 52, 5735-5740(2019).
[63] Yang Y Q, Fan X X, Li L et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-Ⅱ fluorescence imaging and photothermal therapy under safe laser fluence[J]. ACS Nano, 14, 2509-2521(2020).
[64] Luo J, Xie Z, Lam J W et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 1740-1741(2001).
[65] Chen S J, Liu J Z, Liu Y et al. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by “switch+knob” effect[J]. Chemical Science, 3, 1804-1809(2012).
[66] Dong Z Z, Bi Y Z, Cui H R et al. AIE supramolecular assembly with FRET effect for visualizing drug delivery[J]. ACS Applied Materials & Interfaces, 11, 23840-23847(2019).
[67] Dong Z Z, Wang Y D, Wang C L et al. Cationic peptidopolysaccharide with an intrinsic AIE effect for combating bacteria and multicolor imaging[J]. Advanced Healthcare Materials, 9, e2000419(2020).
[68] Liu H X, Xiong L H, Kwok R T K et al. AIE bioconjugates for biomedical applications[J]. Advanced Optical Materials, 8, 2000162(2020).
[69] Sheng Z, Guo B, Hu D et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-Ⅱ fluorescence and NIR-Ⅰ photoacoustic imaging of orthotopic brain tumors[J]. Advanced Materials, 30, e1800766(2018).
[70] Li Y X, Hu D H, Sheng Z H et al. Self-assembled AIEgen nanoparticles for multiscale NIR-Ⅱ vascular imaging[J]. Biomaterials, 264, 120365(2021).
[71] Sheng Z H, Li Y X, Hu D H et al. Centimeter-deep NIR-Ⅱ fluorescence imaging with nontoxic AIE probes in nonhuman primates[J]. Research, 2020, 4074593(2020).
[72] Feng Z, Bai S Y, Qi J et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine[J]. Advanced Materials, 33, e2008123(2021).
[73] So M K, Xu C J, Loening A M et al. Self-illuminating quantum dot conjugates for in vivo imaging[J]. Nature Biotechnology, 24, 339-343(2006).
[74] Medintz I L, Uyeda H T, Goldman E R et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 4, 435-446(2005).
[75] Zhang L J, Xia L, Xie H Y et al. Quantum dot based biotracking and biodetection[J]. Analytical Chemistry, 91, 532-547(2019).
[76] Hong G S, Robinson J T, Zhang Y J et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region[J]. Angewandte Chemie, 51, 9818-9821(2012).
[77] Li C Y, Cao L M, Zhang Y J et al. Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe[J]. Small, 11, 4517-4525(2015).
[78] Li C Y, Zhang Y J, Chen G C et al. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis[J]. Advanced Materials, 29, 1605754(2017).
[79] Li C Y, Chen G C, Zhang Y J et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications[J]. Journal of the American Chemical Society, 142, 14789-14804(2020).
[80] Wen Q X, Zhang Y J, Li C Y et al. NIR-Ⅱ fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis[J]. Angewandte Chemie, 58, 11001-11006(2019).
[81] Lian W, Tu D T, Hu P et al. Broadband excitable NIR-Ⅱ luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J]. Nano Today, 35, 100943(2020).
[82] Bouzigues C, Gacoin T, Alexandrou A. Biological applications of rare-earth based nanoparticles[J]. ACS Nano, 5, 8488-8505(2011).
[83] Sun L D, Wang Y F, Yan C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra[J]. Accounts of Chemical Research, 47, 1001-1009(2014).
[84] Zhang X, He S Q, Ding B B et al. Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-Ⅱ imaging window[J]. Chemical Engineering Journal, 385, 123959(2020).
[85] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).
[86] Wang P Y, Fan Y, Lu L F et al. NIR-Ⅱ nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J]. Nature Communications, 9, 2898(2018).
[87] Li H, Wang X, Li X L et al. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging[J]. Chemistry of Materials, 32, 3365-3375(2020).
[88] Yang J Y, He S Q, Hu Z H et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-Ⅱ/Ⅱa/Ⅱb windows[J]. Nano Today, 38, 101120(2021).
[89] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).
[90] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).
[91] Diao S, Blackburn J L, Hong G S et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J]. Angewandte Chemie International Edition, 54, 14758-14762(2015).
[92] Zhou H, Li S S, Zeng X D et al. Tumor-homing peptide-based NIR-Ⅱ probes for targeted spontaneous breast tumor imaging[J]. Chinese Chemical Letters, 31, 1382-1386(2020).
[93] Linssen M D, Ter Weele E J, Allersma D P et al. Roadmap for the development and clinical translation of optical tracers cetuximab-800CW and trastuzumab-800CW[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 60, 418-423(2019).
[94] Steinkamp P J, Pranger B K, Li M F et al. Fluorescence-guided visualization of soft-tissue sarcomas by targeting vascular endothelial growth factor A: a phase 1 single-center clinical trial[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 62, 342-347(2021).
[95] Lamberts L E, Koch M, de Jong J S et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study[J]. Clinical Cancer Research, 23, 2730-2741(2017).
Get Citation
Copy Citation Text
Zuwu Wei, Sen Yang, Ming Wu, Xiaolong Liu. Recent Progress in Near-Infrared-Ⅱ Fluorescence Imaging Probes for Fluorescence Surgical Navigation[J]. Chinese Journal of Lasers, 2022, 49(5): 0507102
Received: Dec. 1, 2021
Accepted: Jan. 14, 2022
Published Online: Mar. 9, 2022
The Author Email: Liu Xiaolong (xiaoloong.liu@gmail.com)