Opto-Electronic Engineering, Volume. 51, Issue 10, 240164(2024)

Dual-layer 3D terahertz metamaterial based multifunctional sensor

Guangsheng Deng1,2, Aoran Guo2, Xinqi Cheng2, Jun Yang1,2, and Fei Cai1、*
Author Affiliations
  • 1Special Display and Imaging Technology Innovation Center of Anhui Province,Academy of Opto-Electronic Technology,Hefei University of Technology,Hefei,Anhui 230009,China
  • 2Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,School of Instrument Science and Optoelectronics Engineering,Hefei University of Technology,Hefei,Anhui 230009,China
  • show less
    References(27)

    [1] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [2] Zhu Q, Tian H W, Jiang W X. Manipulations and applications of radiating waves using electromagnetic metasurfaces[J]. Opto-Electron Eng, 50, 230115(2023).

    [3] Baqir M A, Choudhury P K. Hyperbolic metamaterial-based optical biosensor for detecting cancer cells[J]. IEEE Photonics Technol Lett, 35, 183-186(2023).

    [4] Ma C W, Ma W Y, Tan Y et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electron Eng, 45, 180298(2018).

    [5] Hu W D, Du X, Liu S Y et al. Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface[J]. Opto-Electron Eng, 50, 230124(2023).

    [6] Hu T Q, Pan T S, Guo D J et al. Omnidirectional configuration of stretchable strain sensor enabled by the strain engineering with chiral Auxetic metamaterial[J]. ACS Nano, 17, 22035-22045(2023).

    [7] Du X X, Mao H P, Yan Y T et al. Study on the spectral characteristics of plant growth regulators based on the structure difference of terahertz metamaterial sensor[J]. IEEE Sensors J, 22, 14065-14074(2022).

    [8] Banerjee S, Dutta P, Basu S et al. A new design of a terahertz metamaterial absorber for gas sensing applications[J]. Symmetry, 15, 24(2023).

    [9] Saadeldin A S, Hameed M F O, Elkaramany E M A et al. Highly sensitive terahertz metamaterial sensor[J]. IEEE Sensors J, 19, 7993-7999(2019).

    [10] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications - explosives,weapons and drugs[J]. Semicond Sci Technol, 20, S266-S280(2005).

    [11] Li Z R, Zhong M, Zang L Y et al. Dual-mode metamaterial absorber for independent sweat and temperature sensing[J]. J Electron Mater, 52, 4106-4116(2023).

    [12] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nat Photonics, 15, 558-569(2021).

    [13] He Z H, Li L Q, Ma H Q et al. Graphene-based metasurface sensing applications in terahertz band[J]. Results Phys, 21, 103795(2021).

    [14] Ahmadivand A, Gerislioglu B, Ahuja R et al. Terahertz plasmonics: the rise of toroidal metadevices towards immunobiosensings[J]. Mater Today, 32, 108-130(2020).

    [15] Wang W J, Sun K X, Xue Y et al. A review of terahertz metamaterial sensors and their applications[J]. Opt Commun, 556, 130266(2024).

    [16] Vivek A, Shambavi K, Alex Z C. A review: metamaterial sensors for material characterization[J]. Sens Rev, 39, 417-432(2019).

    [17] Deng X X, Shen Y C, Liu B W et al. Terahertz metamaterial sensor for sensitive detection of citrate salt solutions[J]. Biosensors (Basel), 12, 408(2022).

    [18] Li J, Zhou Y D, Peng F W et al. High-FOM temperature sensing based on Hg-EIT-like liquid metamaterial unit[J]. Nanomaterials, 12, 1395(2022).

    [19] Tian X Y, Yin L X, Li D C. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electron Eng, 44, 69-76(2017).

    [20] Zhang Y P, Li T T, Zeng B B et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 7, 12682-12688(2015).

    [21] Wang X, Wang J L. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel[J]. Acta Opt Sin, 40, 1904001(2020).

    [22] Fu Y P, Xu X C, Lin Y S. Actively programmable MEMS-based racetrack-shaped terahertz metamaterial[J]. J Appl Phys, 131, 115301(2022).

    [23] Lin Y S, Liao S Q, Liu X Y et al. Tunable terahertz metamaterial by using three-dimensional double split-ring resonators[J]. Opt Laser Technol, 112, 215-221(2019).

    [24] Almawgani A H M, Surve J, Parmar T et al. A graphene-metasurface-inspired optical sensor for the heavy metals detection for efficient and rapid water treatment[J]. Photonics, 10, 56(2023).

    [25] Yang J, Qi L M, Li B et al. A terahertz metamaterial sensor used for distinguishing glucose concentration[J]. Results Phys, 26, 104332(2021).

    [26] Deng G S, Guo A R, Kou Z F et al. High-sensitivity terahertz sensor for liquid medium detection using dual-layer metasurfaces[J]. IEEE Trans Terahertz Sci Technol, 14, 57-63(2024).

    [27] Guo A R, Kou Z F, Yang J et al. Electromagnetic anapole-inspired micro-displacement sensor using dual-layer terahertz metasurfaces with micrometer-level sensitivity and centimeter-level range[J]. IEEE Trans Instrum Meas, 73, 6006709(2024).

    Tools

    Get Citation

    Copy Citation Text

    Guangsheng Deng, Aoran Guo, Xinqi Cheng, Jun Yang, Fei Cai. Dual-layer 3D terahertz metamaterial based multifunctional sensor[J]. Opto-Electronic Engineering, 2024, 51(10): 240164

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 12, 2024

    Accepted: Sep. 30, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Fei Cai (蔡斐)

    DOI:10.12086/oee.2024.240164

    Topics