Acta Optica Sinica, Volume. 45, Issue 5, 0515001(2025)

Multi‑Instance Point Cloud Pose Estimation Method Based on Gaussian‐Weighted Voting Strategy

Ying Zhang, Hongzhi Du, Yunbo Hu, Yanbiao Sun*, and Jigui Zhu
Author Affiliations
  • National Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(18)
    Algorithmic framework
    Schematic diagram of point-to-point features
    Hash indicates intent
    Coordinate transformations between model and scene
    Correspondences generation based on Gaussian-weighted voting
    Schematic diagram of distance invariance matrix.
    Schematic diagram of refined clustering based on center point
    Romain dataset
    Partial pose estimation results of Romain dataset
    ROBI dataset
    Partial pose estimation results of ROBI dataset
    Experimental scenario. (a) Robotic arm sorting system; (b) before sorting; (c) after sorting
    Partial recognition results of connecting rod workpieces in real scenarios
    • Table 1. Accuracy comparison results of the best pose estimation of workpiece

      View table

      Table 1. Accuracy comparison results of the best pose estimation of workpiece

      WorkpieceRE /(°)TE /mm
      PPFProposed algorithmPPFProposed algorithm
      Brick2.701.652.971.81
      Gear1.270.010.870.23
      Linkage5.983.572.552.36
    • Table 2. Pose estimation evaluation results of Romain dataset

      View table

      Table 2. Pose estimation evaluation results of Romain dataset

      AlgorithmMRMPMF
      PPF60.4060.4060.40
      3D Hough6.187.216.15
      Proposed algorithm72.9483.2276.96
    • Table 3. Pose estimation evaluation results of ROBI dataset

      View table

      Table 3. Pose estimation evaluation results of ROBI dataset

      AlgorithmMRMPMF
      Line 2D30.963.224.90
      AAE26.155.118.37
      PPF6.414.584.26
      3D Hough
      Proposed algorithm20.0434.2523.76
    • Table 4. Evaluation results of pose estimation of proposed algorithm under real point cloud dataset

      View table

      Table 4. Evaluation results of pose estimation of proposed algorithm under real point cloud dataset

      SequenceRMSE /mmMR /%MP /%MF /%
      12.8437.5037.5037.50
      21.1341.1853.8546.67
      32.1666.6785.7175.00
      42.5870.0077.7873.69
      51.8090.0090.0090.00
    • Table 5. Success rate of robotic arm grasping in real scenes

      View table

      Table 5. Success rate of robotic arm grasping in real scenes

      Algorithm

      Experiment

      No.

      Grasping

      success rate

      Average grasping

      success rate

      PPF18060
      270
      345
      465
      540

      Proposed

      algorithm

      110093
      285
      385
      4100
      595
    Tools

    Get Citation

    Copy Citation Text

    Ying Zhang, Hongzhi Du, Yunbo Hu, Yanbiao Sun, Jigui Zhu. Multi‑Instance Point Cloud Pose Estimation Method Based on Gaussian‐Weighted Voting Strategy[J]. Acta Optica Sinica, 2025, 45(5): 0515001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 6, 2024

    Accepted: Jan. 3, 2025

    Published Online: Mar. 24, 2025

    The Author Email: Yanbiao Sun (yanbiao.sun@tju.edu.cn)

    DOI:10.3788/AOS241716

    CSTR:32393.14.AOS241716

    Topics