Chinese Journal of Lasers, Volume. 49, Issue 6, 0610001(2022)
Robot Pose Estimation Method Based on Image and Point Cloud Fusion with Dynamic Feature Elimination
[1] Liu L, Ma G Q, Gao Y et al. Flexible measurement technology of complex curved surface three-dimensional shape robot based on iGPS[J]. Chinese Journal of Lasers, 46, 0304006(2019).
[2] Hu S X, Chen C P, Zhang A W. Application of SLAM in vehicle-borne mobile mapping system[J]. Chinese Journal of Lasers, 39, 1108012(2012).
[3] Zeng S P, Zhou G B, Li W W et al. Summary of key technologies of rescue robot for public safety[J]. Robot Technique and Application, 20-25(2019).
[4] Cao S H, Zhang C X, Wang G Z et al. Development situation and military application of autonomous underwater vehicle[J]. Ship Engineering, 41, 79-84, 89(2019).
[5] Taniguchi A, Isobe S, El Hafi L et al. Autonomous planning based on spatial concepts to tidy up home environments with service robots[J]. Advanced Robotics, 35, 471-489(2021).
[6] Jung J, Oh T, Myung H. Magnetic field constraints and sequence-based matching for indoor pose graph SLAM[J]. Robotics and Autonomous Systems, 70, 92-105(2015).
[7] Carlone L, Dellaert F. Duality-based verification techniques for 2D SLAM[C], 4589-4596(2015).
[8] Shen K, Wang M L, Fu M Y et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 67, 7659-7668(2020).
[9] Kohlbrecher S, von Stryk O, Meyer J et al. A flexible and scalable SLAM system with full 3D motion estimation[C], 155-160(2011).
[10] Menna M, Gianni M, Ferri F et al. Real-time autonomous 3D navigation for tracked vehicles in rescue environments[C], 696-702(2014).
[11] Li M G, Zhu H, You S Z et al. Efficient laser-based 3D SLAM for coal mine rescue robots[J]. IEEE Access, 7, 14124-14138(2019).
[12] Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C], 4758-4765(2018).
[13] Davison A J, Reid I D, Molton N D et al. MonoSLAM: real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 1052-1067(2007).
[14] Huang G P, Mourikis A I, Roumeliotis S I. Analysis and improvement of the consistency of extended Kalman filter based SLAM[C], 473-479(2008).
[15] Zhang Z, Nejat G. Intelligent sensing systems for rescue robots: landmark identification and three-dimensional mapping of unknown cluttered urban search and rescue environments[J]. Advanced Robotics, 23, 1179-1198(2009).
[16] Zou B, Lin S Y, Yin Z S. Semantic mapping based on YOLOv3 and visual SLAM[J]. Laser & Optoelectronics Progress, 57, 201012(2020).
[17] Li X P, Ao H X, Belaroussi R et al. Fast semi-dense 3D semantic mapping with monocular visual SLAM[C], 385-390(2017).
[18] Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 31, 1147-1163(2015).
[19] Mur-Artal R, Tardós J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 33, 1255-1262(2017).
[20] Forster C, Pizzoli M, Scaramuzza D. SVO: fast semi-direct monocular visual odometry[C], 15-22(2014).
[21] Ma Z G, Zhao Y G, Liu C Y et al. Survey of SLAM with laser-camera fusion sensor[J]. Computer Measurement & Control, 27, 1-6(2019).
[22] Chen X, Zhang H, Lu H M et al. Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue[C], 41-47(2017).
[23] Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 41, 401-416(2017).
[24] Kubelka V, Reinstein M, Svoboda T. Tracked robot odometry for obstacle traversal in sensory deprived environment[J]. IEEE/ASME Transactions on Mechatronics, 24, 2745-2755(2019).
[25] Wang H L, Zhang C J, Song Y et al. Three-dimensional reconstruction based on visual SLAM of mobile robot in search and rescue disaster scenarios[J]. Robotica, 38, 350-373(2020).
[27] Shi S S, Wang X G, Li H S. PointRCNN: 3D object proposal generation and detection from point cloud[C], 770-779(2019).
[28] Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 81, 155-166(2008).
[29] Triggs B, McLauchlan P F, Hartley R I et al. Bundle adjustment: a modern synthesis[M]. Triggs B, Zisserman A, Szeliski R. Vision algorithms: theory and practice. Lecture notes in computer science, 1883, 298-372(2000).
[30] Kato S, Takeuchi E, Ishiguro Y et al. An open approach to autonomous vehicles[J]. IEEE Micro, 35, 60-68(2015).
Get Citation
Copy Citation Text
Lei Zhang, Xiaobin Xu, Chenfei Cao, Jia He, Yngying Ran, Zhiying Tan, Minzhou Luo. Robot Pose Estimation Method Based on Image and Point Cloud Fusion with Dynamic Feature Elimination[J]. Chinese Journal of Lasers, 2022, 49(6): 0610001
Received: Jun. 9, 2021
Accepted: Aug. 10, 2021
Published Online: Mar. 2, 2022
The Author Email: Xu Xiaobin (xxbtc@hhu.edu.cn)