Journal of Inorganic Materials, Volume. 40, Issue 2, 128(2025)
[2] WU Z, SHI B, LI Y et al. Use of heavy dielectric materials in solidly mounted A 1 mode resonators based on lithium niobate[J]. Japanese Journal of Applied Physics, SG1001(2022).
[3] LI M, EL-HAKIKI M, KALIM D et al. A fully matched LTE-A carrier aggregation quadplexer based on BAW and SAW technologies[J]. 2014 IEEE International Ultrasonics Symposium, Chicago, 77(2014).
[4] CHEN J C, YANG H Y, WU J W et al. Widening the data pipeline: a carrier aggregation BAW quadplexer module[J]. IEEE Microwave Magazine, 62(2018).
[5] LIU Y, CAI Y, ZHANG Y et al. Materials, design, and characteristics of bulk acoustic wave resonator: a review[J]. Micromachines, 630(2020).
[6] AIGNER R, FATTINGER G. 3G-4G-5G:how BAW filter technology enables a connected world[conf-proc]. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, 523(2019).
[7] LAKIN K M, KLINE G R, MCCARRON K T. High-
[8] FATTINGER G G. BAW resonator design considerations-an overview[J]. 2008 IEEE International Frequency Control Symposium, Honolulu, 762(2008).
[9] HEEREN W, FATTINGER M, FATTINGER G et al. Impact of thermo-mechanical stress on the TCF of WLP BAW filters[J]. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 1(2016).
[10] BI F Z, BARBER B P. Bulk acoustic wave RF technology[J]. IEEE Microwave Magazine, 65(2008).
[11] RUBY R. The ‘how & why’ a deceptively simple acoustic resonator became the basis of a multi-billion dollar industry[J]. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 308(2017).
[12] LAKIN K, BELSICK J, MCDONALD J et al. Improved bulk wave resonator coupling coefficient for wide bandwidth filters[conf-proc]. 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), Atlanta, 827(2001).
[13] RUBY R. Review and comparison of bulk acoustic wave FBAR, SMR technology[J]. 2007 IEEE Ultrasonics Symposium, New York, 1029(2007).
[14] FELD D A, PARKER R, RUBY R et al. After 60 years: a new formula for computing quality factor is warranted[J]. 2008 IEEE Ultrasonics Symposium, Beijing, 431(2008).
[15] UEDA M, NISHIHARA T, TANIGUCHI S et al. Film bulk acoustic resonator using high-acoustic-impedance electrodes[J]. Japanese Journal of Applied Physics, 4642(2007).
[16] KAITILA J. 3C-1 review of wave propagation in BAW thin film devices-progress and prospects[conf-proc]. 2007 IEEE Ultrasonics Symposium Proceedings, New York, 120(2007).
[17] LIN Y C, HONG C R, CHUANG H A. Fabrication and analysis of ZnO thin film bulk acoustic resonators[J]. Applied Surface Science, 3780(2008).
[18] KAMOHARA T, AKIYAMA M, KUWANO N. Influence of molybdenum bottom electrodes on crystal growth of aluminum nitride thin films[J]. Journal of Crystal Growth, 345(2008).
[19] NOR N I M, SHAH K, SINGH J J et al. Film bulk acoustic wave resonator (FBAR) filter for Ku-band transceiver[conf-proc]. Nanotechnology Conference and Expo (NSTI-Nanotech 2013), Washington, 169(2013).
[20] CLEMENT M, IBORRA E, OLIVARES J et al. DCS Tx filters using AlN resonators with iridium electrodes[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 518(2010).
[21] AIGNER R. MEMS in RF-filter applications: thin film bulk- acoustic-wave technology[conf-proc]. 13th International Conference on Solid- State Sensors, Actuators and Microsystems, Seoul, 5(2005).
[22] LI Y, GONG K, WONG Y P et al. Comparative study of piston mode designs for temperature-compensated surface acoustic wave resonators using SiO2/LiNbO3 structure[J]. Japanese Journal of Applied Physics, SG1020(2022).
[23] NAKAGAWA R, SUZUKI T, SHIMIZU H et al. Discussion about generation mechanisms of third-order nonlinear signals in surface acoustic wave resonators based on simulation[J]. Japanese Journal of Applied Physics, 07KD02(2016).
[24] UEDA M, IWAKI R, NISHIHARA R et al. Nonlinear distortion of acoustic devices for radio-frequency front-end circuit and its suppression[J]. Japanese Journal of Applied Physics, 07HD12(2010).
[25] HASHIMOTO K Y, LI X, BAO J et al. Perturbation analysis of nonlinearity in radio frequency bulk acoustic wave resonators using mass-spring model[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1479(2020).
[26] PANG X N, YONG Y K. Simulation of nonlinear resonance, amplitude-frequency, and harmonic generation effects in SAW and BAW devices[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 422(2019).
[27] SCHNEIDER J D, LU T, TIWARI S et al. Frequency conversion through nonlinear mixing in acoustic waves[J]. Journal of Applied Physics, 064105(2020).
[28] ASSILA N, KADOTA M, OHASHI Y et al. High velocity lamb waves in LiTaO3 thin plate for high frequency filters[J]. 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, 333(2016).
[29] HE Y, WONG Y P, WU T et al. Full 3D FEM simulation of thickness shear bulk acoustic resonators on LN assisted by hierarchical cascading technique[J]. 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, 1(2021).
[30] QIU L, LI X Y, MATSUOKA N et al. Emphasis mechanism of nonlinear responses caused by transverse modes in RF BAW devices[J]. Japanese Journal of Applied Physics, SKKC02(2020).
[31] NGUYEN N T B, JOHANNESSEN A, HANKE U. Design of high-
[32] LI X, BAO J, HUANG Y et al. Use of double-raised-border structure for quality factor enhancement of type II piston mode FBAR[J]. Microsystem Technologies, 2991(2018).
[33] NGUYEN N, JOHANNESSEN A, ROOTH S et al. A design approach for high-
[34] REN J, CHU H, BAI Y et al. Research and design of high sensitivity FBAR micro-mass sensors[conf-proc]. 2020 Asia Conference on Geological Research and Environmental Technology, Kamakura, 042014(2021).
[35] SETOODEH S, KEMIKTARAK U, BAYATPUR F et al. A high power circuit model of an FBAR resonator for use in filter design[J]. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2169(2019).
[36] FATTINGER M, KREUZER S. BAW filters for 5G: lead geometry impact on current distribution in resonators[J]. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Linz, 1(2020).
[37] LIU Y, SUN K, MA J et al. Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect[J]. Coatings, 1126(2022).
[38] WU X, XU L, SHI G et al. Design and modeling of film bulk acoustic resonator considering temperature compensation for 5G communication[J]. Analog Integrated Circuits and Signal Processing, 219(2024).
[39] HAOPENG W, CAI X, WU Y et al. An investigation on extraction of material parameters in longitudinal mode of FBAR[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 1024(2020).
[40] NOR N I M, HASNI A H M, KHALID N et al. Carbon nanotube as electrode in film bulk acoustic wave resonator for improved performance[conf-proc]. International Conference on Applied Photonics and Electronics 2019 (InCAPE 2019), Putrajaya, 020021(2020).
[41] LU R, YANG Y, LINK S et al. A 1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%[J]. Journal of Microelectromechanical Systems, 313(2020).
[42] SATOH Y, NISHIHARA T, YOKOYAMA T et al. Development of piezoelectric thin film resonator and its impact on future wireless communication systems[J]. Japanese Journal of Applied Physics, 2883(2005).
[43] WANG L P, GINSBURG E, GERFERS F et al. Sputtered AlN thin films for piezoelectric MEMS devices[J]. SENSORS, 2006 IEEE, Daegu, 10(2006).
[44] MAHON S. The 5G effect on RF filter technologies[J]. IEEE Transactions on Semiconductor Manufacturing, 494(2017).
[45] AIGNER R, FATTINGER G, SCHAEFER M et al. BAW filters for 5G bands[J]. 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, 1451(2018).
[46] LI G, KIM T W, INOUE S et al. Epitaxial growth of single- crystalline AlN films on tungsten substrates[J]. Applied Physics Letters, 241905(2006).
[47] YANG H, WANG W, LIU Z et al. Epitaxial growth of 2 inch diameter homogeneous AlN single-crystalline films by pulsed laser deposition[J]. Journal of Physics D-Applied Physics, 105101(2013).
[48] LIN Y, YANG M, WANG W et al. High-quality crack-free GaN epitaxial films grown on Si substrates by a two-step growth of AlN buffer layer[J]. CrystEngComm, 2446(2016).
[49] JIANGHUA L, WENLIANG W, YULIN Z et al. AlN/nitrided sapphire and AlN/non-nitrided sapphire hetero-structures epitaxially grown by pulsed laser deposition: a comparative study[J]. Vacuum, 241(2017).
[50] WANG H, LI Z, WANG W et al. Growth mechanisms of GaN epitaxial films grown on
[51] SHEALY J B, SHEALY J B, PATEL P et al. Single crystal aluminum nitride film bulk acoustic resonators[J]. 2016 IEEE Radio and Wireless Symposium (RWS), Austin, 16(2016).
[52] SHEALY J B, VETURY R, GIBB S R et al. Low loss, 3.7 GHz wideband BAW filters, using high power single crystal AlN-on-SiC resonators[J]. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, 1476(2017).
[53] VETURY R, HODGE M D, SHEALY J B. High power, wideband single crystal XBAW technology for sub-6 GHz micro RF filter applications[J]. 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, 206(2018).
[54] SHEN Y, ZHANG R, VETURY R et al. 40.6 watt, high power 3.55 GHz single crystal XBAW RF filters for 5G infrastructure applications[J]. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, 1(2020).
[55] DING R, XUAN W, DONG S et al. The 3.4 GHz BAW RF filter based on single crystal AlN resonator for 5G application[J]. Nanomaterials, 3082(2022).
[56] QIN R, ZHOU C, DOU W et al. 3.3 GHz BAW resonators fabricated on single crystal AlN templates[J]. 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, 1(2023).
[57] AKIYAMA M, KAMOHARA T, KANO K et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J]. Advanced Materials, 593(2009).
[58] MOREIRA M, BJURSTRÖM J, KATARDJEV I et al. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications[J]. Vacuum, 23(2011).
[59] UMEDA K, KAWAI H, HONDA A et al. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices[J]. 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, 733(2013).
[60] SANO K H, KARASAWA R, YANAGITANI T. High electromechanical coefficient
[61] PARK M, WANG J, DARGIS R et al. Super high-frequency scandium aluminum nitride crystalline film bulk acoustic resonators[J]. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 1689(2019).
[62] MOE C, OLSSON R H, PATEL P et al. Highly doped AlScN 3.5 GHz XBAW resonators with 16% keff2 for 5G RF filter applications[J]. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, 1(2020).
[63] WANG J, PARK M, MERTIN S et al. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films[J]. Journal of Microelectromechanical Systems, 741(2020).
[64] KIM D, MORENO G, BI F et al. Wideband 6 GHz RF filters for Wi-Fi 6E using a unique BAW process and highly Sc-doped AlN thin film[J]. 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, 207(2021).
[65] ZOU Y, GAO C, ZHOU J et al. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications[J]. Microsystems & Nanoengineering, 124(2022).
[66] DOU W, ZHOU C, QIN R et al. Super-high-frequency bulk acoustic resonators based on aluminum scandium nitride for wideband applications[J]. Nanomaterials, 2737(2023).
[67] MOMIDA H, TESHIGAHARA A, OGUCHI T. Strong enhancement of piezoelectric constants in Sc
[68] BOGNER A, TIMME H J, BAUDER R et al. Impact of high Sc content on crystal morphology and RF performance of sputtered Al1-
[69] MERTIN S, HEINZ B, RATTUNDE O et al. Piezoelectric and structural properties of
[70] GREEN M L, CHOI C L, HATTRICK-SIMPERS J R et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies[J]. Applied Physics Reviews, 011105(2017).
[71] LIU Y H, HU Z H, SUO Z G et al. High-throughput experiments facilitate materials innovation: a review[J]. Science China (Technological Sciences), 521(2019).
[72] DE PABLO J J, JACKSON N E, WEBB M A et al. New frontiers for the materials genome initiative[J]. npj Computational Materials, 41(2019).
[73] WANG R, XU C, DONG R et al. A secured big-data sharing platform for materials genome engineering: state-of-the-art, challenges and architecture[J]. Future Generation Computer Systems-The International Journal of eScience, 59(2023).
[74] HIMANEN L, GEURTS A, FOSTER A S et al. Data-driven materials science: status, challenges, and perspectives[J]. Advanced Science, 1900808(2019).
[75] TAN C, WU H, YANG L et al. Cutting edge high-throughput synthesis and characterization techniques in combinatorial materials science[J]. Advanced Materials Technologies, 2302038(2024).
[76] HATTRICK-SIMPERS J R, GREGOIRE J M, KUSNE A G. Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge[J]. APL Materials, 2832(2016).
[77] CASUKHELA R, VIJAYAN S, JINSCHEK J R et al. A framework for the optimal selection of high-throughput data collection workflows by autonomous experimentation systems[J]. Integrating Materials and Manufacturing Innovation, 557(2022).
[78] LUDWIG A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods[J]. npj Computational Materials, 70(2019).
[79] MANNA S, BRENNECKA G L, STEVANOVIC V et al. Tuning the piezoelectric and mechanical properties of the AlN system
[81] HIRATA K, MORI Y, YAMADA H et al. Significant enhancement of piezoelectric response in AlN by Yb addition[J]. Materials, 309(2021).
[82] YU X, ZHU L, LI X et al. Doping engineering for optimizing piezoelectric and elastic performance of AlN[J]. Materials, 1778(2023).
[83] BOUSQUET M, PERREAU P, JOULIE A et al. 4.2 GHz LiNbO3 film bulk acoustic resonator[J]. 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, 1(2021).
[84] REINHARDT A, BOUSQUET M, JOULIE A et al. Lithium niobate film bulk longitudinal wave resonator[conf-proc]. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Gainesville, 1(2021).
[85] BOUSQUET M, BOREL E, JOULIE A et al. LiNbO3 film bulk acoustic resonator for n79 band[J]. 2022 IEEE International Ultrasonics Symposium (IUS), Venice, 1(2022).
[86] YI X, ZHAO L, OUYANG P et al. High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method[J]. IEEE Electron Device Letters, 942(2022).
[87] OUYANG P, YI X, LI G. Single-crystalline bulk acoustic wave resonators fabricated with AlN film grown by a combination of PLD and MOCVD methods[J]. IEEE Electron Device Letters, 538(2024).
[88] ZUO C, HE C, CHENG W et al. Hybrid filter design for 5G using IPD and acoustic technologies[J]. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 269(2019).
[89] CHEN L, LING F. Addressing 5G NR filter challenges with hybrid technologies[J]. 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 1914(2022).
[90] DING R, XUAN W, GAO F et al. Compact and high steep skirts hybrid heterogeneous integrated N77 full band BAW filter based on band-stop theory[J]. IEEE Electron Device Letters, 793(2024).
[91] BOGNER A, BAUDER R, TIMME H J et al. All-pass based filter design using BAW resonators[J]. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 1685(2019).
[92] WU H P, WU Y L, LAI Z G et al. A hybrid film-bulk- acoustic-resonator/coupled-line/transmission-line high selectivity wideband bandpass FBAR filter[J]. IEEE Transactions on Microwave Theory and Techniques, 3389(2020).
[93] WU H P, WU Y L, LAI Z G et al. A hybrid filter with extremely wide bandwidth and high selectivity using FBAR network[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 3164(2022).
[94] SUN J I, SUN S, YU X et al. A deep neural network based tuning technique of lossy microwave coupled resonator filters[J]. Microwave and Optical Technology Letters, 2169(2019).
[95] SALLAM T, ATTIYA A M. Convolutional neural network for coupling matrix extraction of microwave filters[J]. Applied Computational Electromagnetics Society Journal, 805(2022).
[96] REN Y, DENG X, YOU Z et al. 1-D multi-channel CNN with transfer functions for inverse electromagnetic behaviors modeling and design optimization of high-dimensional filters[J]. Applied Intelligence, 503(2023).
[97] FU J, JIN J, YANG J et al. Feature-assisted neural network surrogate-based multiphysics optimization for microwave filters[J]. IEEE Microwave and Wireless Technology Letters, 474(2024).
[98] BALTEANU F, DROGI S, CHOI Y et al. Multiple transmitter coexistence for 5G RF front end modules[conf-proc]. 2021 51st European Microwave Conference (EuMC), London, 180(2022).
[99] MOREIRA C P, SHIRAKAWA A A, KERHERVE E et al. Design of a fully-integrated BiCMOS/FBAR reconfigurable RF receiver front-end[M]. 18th annual symposium on Integrated circuits and system design, New York, 138(2005).
[100] PILLAI G, ZOPE A A, TSAI M L et al. 3-GHz BAW composite resonators integrated with CMOS in a single-chip configuration[J]. 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, 1(2016).
[101] GAO C, ZHANG M, JIANG Y et al. A monolithic FBAR oscillator based on heterogeneous system-on-chip integration[J]. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, 895(2019).
[102] CAMPANELLA H, QIAN Y, ROMERO C O et al. Monolithic multiband MEMS RF front-end module for 5G mobile[J]. Journal of Microelectromechanical Systems, 72(2020).
[103] YU H, WANG X, PENG X et al. Performance optimization of FBAR filters with wafer-level chip-scale package using embedded matching inductors on multilayer PCB[J]. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, 1(2022).
Get Citation
Copy Citation Text
Guilong TAO, Guowei ZHI, Tianyou LUO, Peidong OUYANG, Xinyan YI, Guoqiang LI.
Category:
Received: Jul. 27, 2024
Accepted: --
Published Online: Apr. 24, 2025
The Author Email: Guoqiang LI (msgli@scut.edu.cn)