Journal of Inorganic Materials, Volume. 40, Issue 2, 145(2025)
[1] JONES K E, PATEL N G, LEVY M A et al. Global trends in emerging infectious diseases[J]. Nature, 990(2008).
[2] BRAY F, LAVERSANNE M, SUNG H et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 229(2024).
[3] WEN M, YU N, YI Z G et al. On-demand phototoxicity inhibition of sensitizers and H2S-triggered
[4] ZHAO Y, CHEN C R, QIU Y Y et al. Injectable fiber electronics for tumor treatment[J]. Advanced Fiber Materials, 246(2022).
[5] YANG J, XU L, DING Y N et al. NIR-II-triggered composite nanofibers to simultaneously achieve intracranial hemostasis, killing superbug and residual cancer cells in brain tumor resection surgery[J]. Advanced Fiber Materials, 209(2023).
[6] WANG Y H, SONG S Y, ZHANG S T et al. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges[J]. Nano Today, 38(2019).
[7] CHEN L, SUN X Q, CHENG K et al. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy[J]. Advanced Fiber Materials, 1669(2022).
[8] METTENBRINK E M, YANG W, WILHELM S. Bioimaging with upconversion nanoparticles[J]. Advanced Photonics Research, 2200098(2022).
[9] ANSARI A A, PARCHUR A K, THORAT N D et al. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine[J]. Coordination Chemistry Reviews, 213971(2021).
[11] SCHROTER A, HIRSCH T. Control of luminescence and interfacial properties as perspective for upconversion nanoparticles[J]. Small, 2306042(2024).
[12] WANG H, WANG Z H, TU Y B et al. Homotypic targeting upconversion nano-reactor for cascade cancer starvation and deep-tissue phototherapy[J]. Biomaterials, 119765(2020).
[14] KUANG G Z, LU H T, HE S S et al. Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanoparticles for multi-modality imaging and synergistic cancer therapy[J]. Advanced Healthcare Materials, e2100938(2021).
[15] AKHTAR N, CHEN C L, CHATTOPADHYAY S. PDT-active upconversion nanoheaters for targeted imaging guided combinatorial cancer phototherapies with low-power single NIR excitation[J]. Biomaterials Advances, 213117(2022).
[18] GAO W, ZHANG C X, HAN Q Y et al. Enhancing red upconversion emission of Ho3+ in a single NaYbF4: Ho3+ microdisk through building different core-shell structures[J]. Journal of Luminescence, 118501(2022).
[19] LIU S B, AN Z C, ZHOU B. Optical multiplexing of upconversion in nanoparticles towards emerging applications[J]. Chemical Engineering Journal, 139649(2023).
[20] CHEN H, DING B B, MA P A et al. Recent progress in upconversion nanomaterials for emerging optical biological applications[J]. Advanced Drug Delivery Reviews, 114414(2022).
[21] RAFIQUE R, KAILASA S K, PARK T J. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications[J]. TrAC Trends in Analytical Chemistry, 115646(2019).
[22] HONG E L, LIU L M, BAI L M et al. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment[J]. Materials Science & Engineering C-Materials for Biological Applications, 110097(2019).
[23] BAO W E, LIU M, MENG J Q et al. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy
[24] LI Y M, LI Y M, BAI Y D et al. Activating ultralow upconversion nanothermometry in neodymium sublattice for heart tissue imaging rapid-responsive[J]. Talanta, 124764(2023).
[25] ZHANG Z, CHEN Y M, ZHANG Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications[J]. Small, 2103241(2022).
[26] GAO W, CHENG X T, XING Y et al. Enhancement of red upconversion emission intensity of Ho3+ ions in NaLuF4: Yb3+/Ho3+/Ce3+@NaLuF4 core-shell nanoparticles[J]. Journal of Rare Earths, 517(2022).
[27] LIU S B, YAN L, LI Q Q et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J]. Chemical Engineering Journal, 125451(2020).
[30] AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. ChemInform, 139(2004).
[33] HLAVÁČEK A, KŘIVÁNKOVÁ J, PIZÚROVÁ N et al. Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics[J]. The Analyst, 7718(2020).
[36] SABU A, LIN J Y, DOONG R A et al. Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles[J]. Materials Advances, 7101(2021).
[37] SUN C N, GRADZIELSKI M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors[J]. Advances in Colloid and Interface Science, 102579(2022).
[40] TESCH A, RÖDER R, ZAPF M et al. Paramagnetic, NIR-luminescent Nd3+- and Gd3+-doped fluorapatite as contrast agent for multimodal biomedical imaging[J]. Journal of the American Ceramic Society, 4441(2018).
[42] YE S H, ZHANG W J, SHEN Y et al. Simultaneous imaging and photodynamic-enhanced photothermal inhibition of cancer cells using a multifunctional system combining indocyanine green and polydopamine-preloaded upconversion luminescent nanoparticles[J]. Macromolecular Rapid Communications, 2300298(2023).
[43] ZHAO J, DI Z H, LI L L. Spatiotemporally selective molecular imaging
[45] CHEN S, WEITEMIER A Z, ZENG X et al. Near-infrared deep brain stimulation
[46] TIAN G, GU Z J, ZHOU L J et al. Mn2+ dopant-controlled synthesis of NaYF4: Yb/Er upconversion nanoparticles for
[47] ZHAN Q Q, QIAN J, LIANG H J et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for
[48] WANG Y F, LIU G Y, SUN L D et al. Nd3+-sensitized upconversion nanophosphors: efficient
[49] LIU B, CHEN Y Y, LI C X et al. Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery[J]. Advanced Functional Materials, 4717(2015).
[51] SHEN J W, YANG C X, DONG L X et al. Incorporation of computed tomography and magnetic resonance imaging function into NaYF4: Yb/Tm upconversion nanoparticles for
[52] FENG Y, CHEN H D, MA L N et al. Surfactant-free aqueous synthesis of novel Ba2GdF7: Yb3+, Er3+@PEG upconversion nanoparticles for
[53] YANG X, SONG R T, GONG X C et al. Multi-shell structured nanomaterials with strong red upconversion emission for trimodal biomedical imaging[J]. Ceramics International, 1601(2024).
[56] LIU Y L, AI K L, LIU J H et al. A high-performance ytterbium-based nanoparticulate contrast agent for
[57] DAI Y, YANG D P, YU D P et al. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy[J]. ACS Applied Materials & Interfaces, 26674(2017).
[58] WANG J, GUO H Y, WANG H et al. NaGdF4-based magnetic resonance nanoprobes for qualitative inflammation imaging in glioma: hot or cold?[J]. Chemical Engineering Journal, 147916(2024).
[59] LING B, WANG Y G, MI R et al. Multimodal imaging and synergetic chemodynamic/photodynamic therapy achieved using an NaGdF4, Yb, Er@NaGdF4, Yb, Tm@NaYF4@Fe-MOFs nanocomposite[J]. Chemistry - An Asian Journal, e202200161(2022).
[60] JIANG Z L, XIA B, REN F et al. Boosting vascular imaging-performance and systemic biosafety of ultra-small NaGdF4 nanoparticles
[61] JU Q, TU D T, LIU Y S et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes[J]. Journal of the American Chemical Society, 1323(2012).
[63] ZHU G N, CHEN L P, ZENG F X et al. GdVO4: Eu3+, Bi3+ nanoparticles as a contrast agent for MRI and luminescence bioimaging[J]. ACS Omega, 15806(2019).
[64] BIJU S, GALLO J, BAÑOBRE-LÓPEZ M et al. A magnetic chameleon: biocompatible lanthanide fluoride nanoparticles with magnetic field dependent tunable contrast properties as a versatile contrast agent for low to ultrahigh field MRI and optical imaging in biological window[J]. Chemistry - A European Journal, 7277(2018).
[65] LI C X, YANG D M, MA P A et al. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and
[69] LI Z K, QIAO X, HE G H et al. Core-satellite metal-organic framework@upconversion nanoparticle superstructures
[70] YANG D, XU J T, YANG G X et al. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles[J]. Chemical Engineering Journal, 363(2018).
[71] KORETSKY A P, SILVA A C. Manganese-enhanced magnetic resonance imaging (MEMRI)[J]. NMR in Biomedicine, 527(2004).
[72] ZHANG Q C, WANG W T, ZHANG M et al. A theranostic nanocomposite with integrated black phosphorus nanosheet, Fe3O4@MnO2-doped upconversion nanoparticles and chlorin for simultaneous multimodal imaging, highly efficient photodynamic and photothermal therapy[J]. Chemical Engineering Journal, 123525(2020).
[73] YAN J H, SHAO K, WU L J et al. Upconversion-nanoparticle-based smart drug-delivery platforms for multimodal imaging-guided cancer therapies[J]. ACS Applied Nano Materials, 15473(2022).
[74] XIAO Q F, ZHENG X P, BU W B et al. A core/satellite multifunctional nanotheranostic for
[76] XIA A, CHEN M, GAO Y et al. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance[J]. Biomaterials, 5394(2012).
[77] GU M Q, ZHANG L L, HAO L Y et al. Upconversion nanoplatform enables multimodal imaging and combinatorial immunotherapy for synergistic tumor treatment and monitoring[J]. ACS Applied Materials & Interfaces, 21766(2023).
Get Citation
Copy Citation Text
Tuxun HAIREGU, Le GUO, Jiayi DING, Jiaqi ZHOU, Xueliang ZHANG, Alifu NUERNISHA.
Category:
Received: Jan. 31, 2024
Accepted: --
Published Online: Apr. 24, 2025
The Author Email: Alifu NUERNISHA (nens_xjmu@126.com)