Journal of Inorganic Materials, Volume. 40, Issue 2, 145(2025)

Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging

Tuxun HAIREGU1, Le GUO2, Jiayi DING2, Jiaqi ZHOU1, Xueliang ZHANG1, and Alifu NUERNISHA1、*
Author Affiliations
  • 11. School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China
  • 22. School of Public Health, Xinjiang Medical University, Urumqi 830011, China
  • show less
    References(77)

    [1] JONES K E, PATEL N G, LEVY M A et al. Global trends in emerging infectious diseases[J]. Nature, 990(2008).

    [2] BRAY F, LAVERSANNE M, SUNG H et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 229(2024).

    [3] WEN M, YU N, YI Z G et al. On-demand phototoxicity inhibition of sensitizers and H2S-triggered in situ activation for precise therapy of colon cancer[J]. Nano Today, 101863(2023).

    [4] ZHAO Y, CHEN C R, QIU Y Y et al. Injectable fiber electronics for tumor treatment[J]. Advanced Fiber Materials, 246(2022).

    [5] YANG J, XU L, DING Y N et al. NIR-II-triggered composite nanofibers to simultaneously achieve intracranial hemostasis, killing superbug and residual cancer cells in brain tumor resection surgery[J]. Advanced Fiber Materials, 209(2023).

    [6] WANG Y H, SONG S Y, ZHANG S T et al. Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges[J]. Nano Today, 38(2019).

    [7] CHEN L, SUN X Q, CHENG K et al. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy[J]. Advanced Fiber Materials, 1669(2022).

    [8] METTENBRINK E M, YANG W, WILHELM S. Bioimaging with upconversion nanoparticles[J]. Advanced Photonics Research, 2200098(2022).

    [9] ANSARI A A, PARCHUR A K, THORAT N D et al. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine[J]. Coordination Chemistry Reviews, 213971(2021).

    [11] SCHROTER A, HIRSCH T. Control of luminescence and interfacial properties as perspective for upconversion nanoparticles[J]. Small, 2306042(2024).

    [12] WANG H, WANG Z H, TU Y B et al. Homotypic targeting upconversion nano-reactor for cascade cancer starvation and deep-tissue phototherapy[J]. Biomaterials, 119765(2020).

    [14] KUANG G Z, LU H T, HE S S et al. Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanoparticles for multi-modality imaging and synergistic cancer therapy[J]. Advanced Healthcare Materials, e2100938(2021).

    [15] AKHTAR N, CHEN C L, CHATTOPADHYAY S. PDT-active upconversion nanoheaters for targeted imaging guided combinatorial cancer phototherapies with low-power single NIR excitation[J]. Biomaterials Advances, 213117(2022).

    [18] GAO W, ZHANG C X, HAN Q Y et al. Enhancing red upconversion emission of Ho3+ in a single NaYbF4: Ho3+ microdisk through building different core-shell structures[J]. Journal of Luminescence, 118501(2022).

    [19] LIU S B, AN Z C, ZHOU B. Optical multiplexing of upconversion in nanoparticles towards emerging applications[J]. Chemical Engineering Journal, 139649(2023).

    [20] CHEN H, DING B B, MA P A et al. Recent progress in upconversion nanomaterials for emerging optical biological applications[J]. Advanced Drug Delivery Reviews, 114414(2022).

    [21] RAFIQUE R, KAILASA S K, PARK T J. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications[J]. TrAC Trends in Analytical Chemistry, 115646(2019).

    [22] HONG E L, LIU L M, BAI L M et al. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment[J]. Materials Science & Engineering C-Materials for Biological Applications, 110097(2019).

    [23] BAO W E, LIU M, MENG J Q et al. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload[J]. Nature Communications, 6399(2021).

    [24] LI Y M, LI Y M, BAI Y D et al. Activating ultralow upconversion nanothermometry in neodymium sublattice for heart tissue imaging rapid-responsive[J]. Talanta, 124764(2023).

    [25] ZHANG Z, CHEN Y M, ZHANG Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications[J]. Small, 2103241(2022).

    [26] GAO W, CHENG X T, XING Y et al. Enhancement of red upconversion emission intensity of Ho3+ ions in NaLuF4: Yb3+/Ho3+/Ce3+@NaLuF4 core-shell nanoparticles[J]. Journal of Rare Earths, 517(2022).

    [27] LIU S B, YAN L, LI Q Q et al. Tri-channel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting[J]. Chemical Engineering Journal, 125451(2020).

    [30] AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. ChemInform, 139(2004).

    [33] HLAVÁČEK A, KŘIVÁNKOVÁ J, PIZÚROVÁ N et al. Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics[J]. The Analyst, 7718(2020).

    [36] SABU A, LIN J Y, DOONG R A et al. Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles[J]. Materials Advances, 7101(2021).

    [37] SUN C N, GRADZIELSKI M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors[J]. Advances in Colloid and Interface Science, 102579(2022).

    [40] TESCH A, RÖDER R, ZAPF M et al. Paramagnetic, NIR-luminescent Nd3+- and Gd3+-doped fluorapatite as contrast agent for multimodal biomedical imaging[J]. Journal of the American Ceramic Society, 4441(2018).

    [42] YE S H, ZHANG W J, SHEN Y et al. Simultaneous imaging and photodynamic-enhanced photothermal inhibition of cancer cells using a multifunctional system combining indocyanine green and polydopamine-preloaded upconversion luminescent nanoparticles[J]. Macromolecular Rapid Communications, 2300298(2023).

    [43] ZHAO J, DI Z H, LI L L. Spatiotemporally selective molecular imaging via upconversion luminescence-controlled, DNA-based biosensor technology[J]. Angewandte Chemie International Edition, e202204277(2022).

    [45] CHEN S, WEITEMIER A Z, ZENG X et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 679(2018).

    [46] TIAN G, GU Z J, ZHOU L J et al. Mn2+ dopant-controlled synthesis of NaYF4: Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery[J]. Advanced Materials, 1226(2012).

    [47] ZHAN Q Q, QIAN J, LIANG H J et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation[J]. ACS Nano, 3744(2011).

    [48] WANG Y F, LIU G Y, SUN L D et al. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect[J]. ACS Nano, 7200(2013).

    [49] LIU B, CHEN Y Y, LI C X et al. Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery[J]. Advanced Functional Materials, 4717(2015).

    [51] SHEN J W, YANG C X, DONG L X et al. Incorporation of computed tomography and magnetic resonance imaging function into NaYF4: Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging[J]. Analytical Chemistry, 12166(2013).

    [52] FENG Y, CHEN H D, MA L N et al. Surfactant-free aqueous synthesis of novel Ba2GdF7: Yb3+, Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging[J]. ACS Applied Materials & Interfaces, 15096(2017).

    [53] YANG X, SONG R T, GONG X C et al. Multi-shell structured nanomaterials with strong red upconversion emission for trimodal biomedical imaging[J]. Ceramics International, 1601(2024).

    [56] LIU Y L, AI K L, LIU J H et al. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging[J]. Angewandte Chemie International Edition, 1437(2012).

    [57] DAI Y, YANG D P, YU D P et al. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy[J]. ACS Applied Materials & Interfaces, 26674(2017).

    [58] WANG J, GUO H Y, WANG H et al. NaGdF4-based magnetic resonance nanoprobes for qualitative inflammation imaging in glioma: hot or cold?[J]. Chemical Engineering Journal, 147916(2024).

    [59] LING B, WANG Y G, MI R et al. Multimodal imaging and synergetic chemodynamic/photodynamic therapy achieved using an NaGdF4, Yb, Er@NaGdF4, Yb, Tm@NaYF4@Fe-MOFs nanocomposite[J]. Chemistry - An Asian Journal, e202200161(2022).

    [60] JIANG Z L, XIA B, REN F et al. Boosting vascular imaging-performance and systemic biosafety of ultra-small NaGdF4 nanoparticles via surface engineering with rationally designed novel hydrophilic block co-polymer[J]. Small Methods, 2101145(2022).

    [61] JU Q, TU D T, LIU Y S et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes[J]. Journal of the American Chemical Society, 1323(2012).

    [63] ZHU G N, CHEN L P, ZENG F X et al. GdVO4: Eu3+, Bi3+ nanoparticles as a contrast agent for MRI and luminescence bioimaging[J]. ACS Omega, 15806(2019).

    [64] BIJU S, GALLO J, BAÑOBRE-LÓPEZ M et al. A magnetic chameleon: biocompatible lanthanide fluoride nanoparticles with magnetic field dependent tunable contrast properties as a versatile contrast agent for low to ultrahigh field MRI and optical imaging in biological window[J]. Chemistry - A European Journal, 7277(2018).

    [65] LI C X, YANG D M, MA P A et al. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery[J]. Small, 4150(2013).

    [69] LI Z K, QIAO X, HE G H et al. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics[J]. Nano Research, 3377(2020).

    [70] YANG D, XU J T, YANG G X et al. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles[J]. Chemical Engineering Journal, 363(2018).

    [71] KORETSKY A P, SILVA A C. Manganese-enhanced magnetic resonance imaging (MEMRI)[J]. NMR in Biomedicine, 527(2004).

    [72] ZHANG Q C, WANG W T, ZHANG M et al. A theranostic nanocomposite with integrated black phosphorus nanosheet, Fe3O4@MnO2-doped upconversion nanoparticles and chlorin for simultaneous multimodal imaging, highly efficient photodynamic and photothermal therapy[J]. Chemical Engineering Journal, 123525(2020).

    [73] YAN J H, SHAO K, WU L J et al. Upconversion-nanoparticle-based smart drug-delivery platforms for multimodal imaging-guided cancer therapies[J]. ACS Applied Nano Materials, 15473(2022).

    [74] XIAO Q F, ZHENG X P, BU W B et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy[J]. Journal of the American Chemical Society, 13041(2013).

    [76] XIA A, CHEN M, GAO Y et al. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance[J]. Biomaterials, 5394(2012).

    [77] GU M Q, ZHANG L L, HAO L Y et al. Upconversion nanoplatform enables multimodal imaging and combinatorial immunotherapy for synergistic tumor treatment and monitoring[J]. ACS Applied Materials & Interfaces, 21766(2023).

    Tools

    Get Citation

    Copy Citation Text

    Tuxun HAIREGU, Le GUO, Jiayi DING, Jiaqi ZHOU, Xueliang ZHANG, Alifu NUERNISHA. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging[J]. Journal of Inorganic Materials, 2025, 40(2): 145

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 31, 2024

    Accepted: --

    Published Online: Apr. 24, 2025

    The Author Email: Alifu NUERNISHA (nens_xjmu@126.com)

    DOI:10.15541/jim20240058

    Topics