Journal of Inorganic Materials, Volume. 37, Issue 10, 1093(2022)
[2] COSTENTIN C, ROBERT M, SAVEANT J. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2423-2436(2013).
[3] QIAO J, LIU Y, HONG F et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 631-675(2014).
[4] LIANG Z, SHEN R, NG Y et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J]. Journal of Materials Science & Technology, 56, 89-121(2020).
[9] SPONHOLZ P, MELLMANN D, JUNGE H et al. Towards a practical setup for hydrogen production from formic acid[J]. ChemSusChem, 1172-1176(2013).
[10] AGARWAL A, ZHAI Y, HILL D et al. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility[J]. ChemSusChem, 1301-1310(2011).
[20] SUN K, SHEN S, LIANG Y et al. Enabling silicon for solar-fuel production[J]. Chemical Reviews, 8662-8719(2014).
[21] WHITE J, BARUCH M, PANDER J et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chemical Reviews, 12888-12935(2015).
[24] GONG Q, DING P, XU M et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2807(2019).
[27] KUMAR A, BUI V, LEE J et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution[J]. Nature Communications, 6766(2021).
[29] LEE W, KO Y, KIM J et al. High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells[J]. Nature Communications, 4271(2021).
Get Citation
Copy Citation Text
Chengjin LI, Yi XUE, Xiaoxia ZHOU, Hangrong CHEN.
Category: RESEARCH ARTICLE
Received: Jan. 17, 2022
Accepted: --
Published Online: Jan. 12, 2023
The Author Email: Xiaoxia ZHOU (zhouxiaoxia@mail.sic.ac.cn)