Chinese Journal of Lasers, Volume. 47, Issue 2, 207012(2020)

Recent Advances in Nanophotosensitizers for Antibacterial Photodynamic Therapy

Zhang Chang1, Ren En1, Pang Xin2, Li Lei1, and Liu Gang1
Author Affiliations
  • 1Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University,Xiamen, Fujian 361102, China
  • 2Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University,Zhengzhou, Henan 450052, China
  • show less
    References(55)

    [1] Liu Y, Qin R. Zaat S A J, et al. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections[J]. Journal of clinical and translational research, 1, 140-167(2015).

    [2] Kashef N, Huang Y Y, Hamblin M R. Advances in antimicrobial photodynamic inactivation at the nanoscale[J]. Nanophotonics, 6, 853-879(2017).

    [3] Hamblin M R, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease?[J]. Photochemical & Photobiological Sciences, 3, 436-450(2004).

    [4] Munita J M, Arias C A. Mechanisms of antibiotic resistance[J]. Microbiology Spectrum, 4, 1-24(2016).

    [5] Shi X T, Zhang C Y, Gao J et al. Recent advances in photodynamic therapy for cancer and infectious diseases[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 11, e1560(2019).

    [6] Sibani S A. McCarron P A, Woolfson A D, et al. Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms[J]. Expert Opinion on Drug Delivery, 5, 1241-1254(2008).

    [7] Benoit D S, Koo H. Targeted, triggered drug delivery to tumor and biofilm microenvironments[J]. Nanomedicine, 11, 873-879(2016).

    [8] Mokwena M G, Kruger C A, Ivan M T et al. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer[J]. Photodiagnosis and Photodynamic Therapy, 22, 147-154(2018).

    [9] Spesia M B, Durantini E N. Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2, 9, 16, 23-tetrakis[2-(N, N, N-trimethylamino)ethoxy]phthalocyanine[J]. Journal of Photochemistry and Photobiology B: Biology, 125, 179-187(2013).

    [10] Li X S, Lee D, Huang J D et al. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy[J]. Angewandte Chemie International Edition, 57, 9885-9890(2018).

    [11] Wang D, Niu L J, Qiao Z Y et al. Synthesis of self-assembled porphyrin nanoparticle photosensitizers[J]. ACS Nano, 12, 3796-3803(2018).

    [12] Sun J Y, Kormakov S, Liu Y et al. Recent progress in metal-based nanoparticles mediated photodynamic therapy[J]. Molecules, 23, 1704(2018).

    [15] Kim S, Ghafoor K, Lee J et al. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis[J]. Water Research, 47, 4403-4411(2013).

    [17] Leyland N S, Podporska-Carroll J, Browne J et al. Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections[J]. Scientific Reports, 6, 24770(2016).

    [18] Karunakaran C, Abiramasundari G, Gomathisankar P et al. Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light[J]. Journal of Colloid and Interface Science, 352, 68-74(2010).

    [19] Kuo W S, Chen H H, Chen S Y et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging[J]. Biomaterials, 120, 185-194(2017).

    [20] Yin R, Wang M, Huang Y Y et al. Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights[J]. Free Radical Biology and Medicine, 79, 14-27(2015).

    [21] Mao C Y, Xiang Y M, Liu X M et al. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing[J]. ACS Nano, 12, 1747-1759(2018).

    [22] Feng Z Z, Liu X M, Tan L et al. Electrophoretic deposited stable Chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation[J]. Small, 14, 1704347(2018).

    [23] Cheng Y, Samia A C, Meyers J D et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer[J]. Journal of the American Chemical Society, 130, 10643-10647(2008).

    [24] Huang W C, Tsai P J, Chen Y C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria[J]. Nanomedicine, 2, 777-787(2007).

    [25] Narband N, Tubby S, Parkin I et al. Gold nanoparticles enhance the toluidine blue-induced lethal photosensitisation of staphylococcus aureus[J]. Current Nanoscience, 4, 409-414(2008).

    [26] Khan S, Azam F, Azam A et al. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm[J]. International Journal of Nanomedicine, 7, 3245-3257(2012).

    [27] Vimbela G, Ngo S M, Fraze C et al. Antibacterial properties and toxicity from metallic nanomaterials[J]. International Journal of Nanomedicine, 12, 3941-3965(2017).

    [28] Tran Q H, Nguyen V Q, Le A T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 033001(2013).

    [29] Li W T. Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers[J]. Current Drug Metabolism, 10, 851-860(2009).

    [30] Misba L, Kulshrestha S, Khan A U. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy[J]. Biofouling, 32, 313-328(2016).

    [31] Xie X Z, Mao C Y, Liu X M et al. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating[J]. ACS Applied Materials & Interfaces, 9, 26417-26428(2017).

    [32] Wang C, Cheng L, Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics[J]. Theranostics, 3, 317-330(2013).

    [33] Ye Y, Li Y, Fang F. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light[J]. International Journal of Nanomedicine, 9, 5157-5165(2014).

    [34] Li S W, Cui S S, Yin D Y et al. Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue[J]. Nanoscale, 9, 3912-3924(2017).

    [37] Wang J H, Wu H, Yang Y M et al. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection[J]. Nanoscale, 10, 132-141(2018).

    [38] Yin T, Huang P, Gao G et al. Superparamagnetic Fe3O4-PEG2K-FA@Ce6 nanoprobes for in vivo dual-mode imaging and targeted photodynamic therapy[J]. Scientific Reports, 6, 36187(2016).

    [39] Yu Q Q, Sun J, Zhu X F et al. Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy[J]. Journal of Materials Chemistry B, 5, 6081-6096(2017).

    [40] Simon-Yarza T, Giménez-Marqués M, Mrimi R et al. A smart metal-organic framework nanomaterial for lung targeting[J]. Angewandte Chemie International Edition, 56, 15565-15569(2017).

    [41] Ma Y, Li X Y, Li A J et al. H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release[J]. Angewandte Chemie International Edition, 56, 13752-13756(2017).

    [42] Mao D, Hu F, Ji S et al. Antibacterial therapy: metal-organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy (adv. mater. 18/2018)[J]. Advanced Materials, 30, 1870124(2018).

    [43] Weijer R, Broekgaarden M, Kos M et al. Enhancing photodynamic therapy of refractory solid cancers: combining second-generation photosensitizers with multi-targeted liposomal delivery[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 23, 103-131(2015).

    [44] Sadasivam M, Avci P, Gupta G K et al. Self-assembled liposomal nanoparticles in photodynamic therapy[J]. European Journal of Nanomedicine, 5, 115-129(2013).

    [45] Ferro S, Ricchelli F, Mancini G et al. Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents[J]. Journal of Photochemistry and Photobiology B: Biology, 83, 98-104(2006).

    [46] Pang X, Xiao Q, Cheng Y et al. Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections[J]. ACS Nano, 13, 2427-2438(2019).

    [47] Rijcken C J F, Hofman J W, van Zeeland F et al. Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterisation and in vitro PDT efficacy[J]. Journal of Controlled Release, 124, 144-153(2007).

    [48] Tsai T, Yang Y T, Wang T H et al. Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles[J]. Lasers in Surgery and Medicine, 41, 316-322(2009).

    [49] Vilsinski B H, Gerola A P, Enumo J A et al. Formulation of aluminum chloride phthalocyanine in Pluronic TM P-123 and F-127 block copolymer micelles: photophysical properties and photodynamic inactivation of microorganisms[J]. Photochemistry and Photobiology, 91, 518-525(2015).

    [50] Wang S Z, Gao R M, Zhou F M et al. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy[J]. Journal of Materials Chemistry, 14, 487-493(2004).

    [51] Couleaud P, Morosini V, Frochot C et al. Silica-based nanoparticles for photodynamic therapy applications[J]. Nanoscale, 2, 1083-1095(2010).

    [52] Zhao Z W, Yan R, Wang J H et al. A bacteria-activated photodynamic nanosystem based on polyelectrolyte-coated silica nanoparticles[J]. Journal of Materials Chemistry B, 5, 3572-3579(2017).

    [53] Pala R, Zeng Y, Pattnaik S et al. Functionalized silver nanoparticles for sensing, molecular imaging and therapeutic applications[J]. Current Nanomedicine, 8, 234-250(2019).

    [54] Wang J, Wang A Z, Lü P et al. Advancing the pharmaceutical potential of bioinorganic hybrid lipid-based assemblies[J]. Advanced Science, 5, 1800564(2018).

    [55] Pang X, Liu X, Cheng Y et al. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections[J]. Advanced Materials, 31, 1902530(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhang Chang, Ren En, Pang Xin, Li Lei, Liu Gang. Recent Advances in Nanophotosensitizers for Antibacterial Photodynamic Therapy[J]. Chinese Journal of Lasers, 2020, 47(2): 207012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Sep. 18, 2019

    Accepted: --

    Published Online: Feb. 21, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0207012

    Topics