Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1000003(2024)
Research Progress and Application of Confocal Scanning Laser Ophthalmoscope (Invited)
[1] Li F M, Xie L X[M]. Chinese ophthalmology(2014).
[2] Vilela M, Mengue C. Central serous chorioretinopathy classification[J]. Pharmaceuticals, 14, 26(2020).
[3] Pierru A, Girmens J F, Héron E et al. Occlusions veineuses rétiniennes[J]. Journal Français D′Ophtalmologie, 40, 696-705(2017).
[4] Hendrick A M, Gibson M V, Kulshreshtha A. Diabetic retinopathy[J]. Primary Care: Clinics in Office Practice, 42, 451-464(2015).
[5] Mehta S. Age-related macular degeneration[J]. Primary Care, 42, 377-391(2015).
[6] Ozawa G. Fundus fluorescein and indocyanine green angiography: a textbook and atlas[J]. Optometry and Vision Science, 86, 1018(2009).
[7] Webb R H, Hughes G W, Pomerantzeff O. Flying spot TV ophthalmoscope[J]. Applied Optics, 19, 2991-2997(1980).
[8] Webb R H, Hughes G W, Delori F C. Confocal scanning laser ophthalmoscope[J]. Applied Optics, 26, 1492-1499(1987).
[9] Roorda A, Duncan J L. Adaptive optics ophthalmoscopy[J]. Annual Review of Vision Science, 1, 19-50(2015).
[10] Choudhry N, Duker J S, Freund K B et al. Classification and guidelines for widefield imaging: recommendations from the international widefield imaging study group[J]. Ophthalmology: Retina, 3, 843-849(2019).
[11] Pomerantzeff O, Govignon J. Design of a wide-angle ophthalmoscope[J]. Archives of Ophthalmology, 86, 420-424(1971).
[12] Pomerantzeff O. Equator-plus camera[J]. Investigative Ophthalmology, 14, 401-406(1975).
[13] Nakagawa T A, Skrinska R. Improved documentation of retinal hemorrhages using a wide-field digital ophthalmic camera in patients who experienced abusive head trauma[J]. Archives of Pediatrics & Adolescent Medicine, 155, 1149-1152(2001).
[14] Shields C L, Materin M, Shields J A. Panoramic imaging of the ocular fundus[J]. Archives of Ophthalmology, 121, 1603-1607(2003).
[15] Mainster M A, Timberlake G T, Webb R H et al. Scanning laser ophthalmoscopy[J]. Ophthalmology, 89, 852-857(1982).
[16] Staurenghi G, Viola F, Mainster M A et al. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system[J]. Archives of Ophthalmology, 123, 244-252(2005).
[17] Ozerdem U, Freeman W R, Bartsch D U et al. A simple noncontact wide-angle fundus photography procedure for clinical and research use[J]. Retina, 21, 189-190(2001).
[18] Pomerantzeff O. Wide-angle noncontact and small-angle contact cameras[J]. Investigative Ophthalmology & Visual Science, 19, 973-979(1980).
[19] Friberg T R, Pandya A, Eller A W. Non-mydriatic panoramic fundus imaging using a non-contact scanning laser-based system[J]. Ophthalmic Surgery, Lasers & Imaging, 34, 488-497(2003).
[20] Chalam K V, Brar V S, Keshavamurthy R. Evaluation of modified portable digital camera for screening of diabetic retinopathy[J]. Ophthalmic Research, 42, 60-62(2009).
[21] Nagiel A, Lalane R A, Sadda S R et al. Ultra-widefield fundus imaging: a review of clinical applications and future trends[J]. Retina, 36, 660-678(2016).
[22] Ohno-Matsui K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging[J]. Ophthalmology, 121, 1798-1809(2014).
[23] Croft D E, van Hemert J, Wykoff C C et al. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography[J]. Ophthalmic Surgery, Lasers & Imaging Retina, 45, 312-317(2014).
[24] Oishi A, Hidaka J, Yoshimura N. Quantification of the image obtained with a wide-field scanning ophthalmoscope[J]. Investigative Ophthalmology & Visual Science, 55, 2424-2431(2014).
[25] Inoue M, Yanagawa A, Yamane S et al. Wide-field fundus imaging using the Optos Optomap and a disposable eyelid speculum[J]. JAMA Ophthalmology, 131, 226(2013).
[26] Lim W S, Grimaldi G, Nicholson L et al. Widefield imaging with Clarus fundus camera vs slit lamp fundus examination in assessing patients referred from the National Health Service diabetic retinopathy screening programme[J]. Eye, 35, 299-306(2021).
[27] Min S G, van Hemert J, Olmos de Koo L C et al. Assessment of accuracy and precision of quantification of ultra-widefield images[J]. Ophthalmology, 122, 864-866(2015).
[28] Kato Y, Inoue M, Hirakata A. Quantitative comparisons of ultra-widefield images of model eye obtained with Optos® 200Tx and Optos® California[J]. BMC Ophthalmology, 19, 115(2019).
[29] Kong W, Gao F, Fan J Y et al. Application of confocal line scanning imaging technique in biomedical imaging[J]. Laser & Optoelectronics Progress, 55, 050003(2018).
[30] Hammer D X, Ferguson R D, Ustun T E et al. Line-scanning laser ophthalmoscope[J]. Journal of Biomedical Optics, 11, 041126(2006).
[31] He Y, Li H, Lu J et al. Retina imaging by using compact line scanning quasi-confocal ophthalmoscope[J]. Chinese Optics Letters, 11, 021101(2013).
[32] Vienola K V, Damodaran M, Braaf B et al. Parallel line scanning ophthalmoscope for retinal imaging[J]. Optics Letters, 40, 5335-5338(2015).
[33] Liu X Y, Xiao Y, Ji L et al. Ultrawide-angle confocal laser line scanning fundus imaging[J]. Chinese Journal of Lasers, 50, 2107108(2023).
[34] Platisa J, Ye X, Ahrens A M et al. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations[J]. Nature Methods, 20, 1095-1103(2023).
[35] Choi S, Kim P, Boutilier R et al. Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second[J]. Optics Express, 21, 23611-23618(2013).
[36] Guirao A, Porter J, Williams D R et al. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes[J]. Journal of the Optical Society of America A, 19, 620-628(2002).
[37] Williams D, Yoon G Y, Porter J et al. Visual benefit of correcting higher order aberrations of the eye[J]. Journal of Refractive Surgery, 16, S554-S559(2000).
[38] Liu L X, Wu Z Q, Qi M J et al. Application of adaptive optics in ophthalmology[J]. Photonics, 9, 288(2022).
[39] Lombardo M, Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance[J]. Journal of Cataract & Refractive Surgery, 36, 313-331(2010).
[40] Liang J, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 14, 2884-2892(1997).
[41] Roorda A, Romero-Borja F, Donnelly Iii W et al. Adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 10, 405-412(2002).
[42] Ling N, Zhang Y D, Rao X J et al. Small table-top adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 4825, 99-108(2002).
[43] Ling N, Zhang Y, Rao X, Wittrock U et al. Adaptive optical system for retina imaging approaches clinic applications[M]. Adaptive optics for industry and medicine. Springer proceedings in physics, 102, 305-315(2006).
[44] Shi G H, Dai Y, Wang L et al. Adaptive optics optical coherence tomography for retina imaging[J]. Chinese Optics Letters, 6, 424-425(2008).
[45] Li H, Lu J, Shi G H et al. Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope[J]. Journal of Biomedical Optics, 16, 110504(2011).
[46] Lu J, Li H, Wei L et al. Retina imaging in vivo with the adaptive optics confocal scanning laser ophthalmoscope[J]. Proceedings of SPIE, 7519, 75191I(2009).
[47] Lu J, Li H, He Y et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope[J]. Acta Physica Sinica, 60, 034207(2011).
[48] Burns S A, Elsner A E, Sapoznik K A et al. Adaptive optics imaging of the human retina[J]. Progress in Retinal and Eye Research, 68, 1-30(2019).
[49] Cheng T, Liu W J, Pang B Q et al. A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system[J]. Chinese Physics B, 27, 070704(2018).
[50] Sulai Y N, Dubra A. Adaptive optics scanning ophthalmoscopy with annular pupils[J]. Biomedical Optics Express, 3, 1647-1661(2012).
[51] Scoles D, Sulai Y N, Langlo C S et al. In vivo imaging of human cone photoreceptor inner segments[J]. Investigative Ophthalmology & Visual Science, 55, 4244-4251(2014).
[52] Scoles D, Sulai Y N, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic[J]. Biomedical Optics Express, 4, 1710-1723(2013).
[53] Yang Q, Zhang J, Nozato K et al. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy[J]. Biomedical Optics Express, 5, 3174-3191(2014).
[54] Dubra A, Harvey Z, Fischer B, Dawant B M, Lorenz C. Registration of 2D images from fast scanning ophthalmic instruments[M]. Biomedical image registration. Lecture notes in computer science, 6204, 60-71(2010).
[55] Dubra A, Sulai Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope[J]. Biomedical Optics Express, 2, 1757-1768(2011).
[56] Dubra A, Sulai Y, Norris J L et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope[J]. Biomedical Optics Express, 2, 1864-1876(2011).
[57] Rossi E A, Granger C E, Sharma R et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 586-591(2017).
[58] Zhang Y H, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy[J]. Optics Letters, 31, 1268-1270(2006).
[59] Poonja S, Patel S, Henry L et al. Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope[J]. Journal of Refractive Surgery, 21, S575-S580(2005).
[60] Arathorn D W, Yang Q, Vogel C R et al. Retinally stabilized cone-targeted stimulus delivery[J]. Optics Express, 15, 13731-13744(2007).
[61] Vogel C R, Arathorn D W, Roorda A et al. Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 14, 487-497(2006).
[62] Tuten W S, Tiruveedhula P, Roorda A. Adaptive optics scanning laser ophthalmoscope-based microperimetry[J]. Optometry and Vision Science, 89, 563-574(2012).
[63] Sheehy C K, Tiruveedhula P, Sabesan R et al. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope[J]. Biomedical Optics Express, 6, 2412-2423(2015).
[64] Tam J, Martin J A, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans[J]. Investigative Ophthalmology & Visual Science, 51, 1691-1698(2010).
[65] Mozaffari S, Jaedicke V, LaRocca F et al. Versatile multi-detector scheme for adaptive optics scanning laser ophthalmoscopy[J]. Biomedical Optics Express, 9, 5477-5488(2018).
[66] Grieve K, Tiruveedhula P, Zhang Y H et al. Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope[J]. Optics Express, 14, 12230-12242(2006).
[67] Mozaffari S, LaRocca F, Jaedicke V et al. Wide-vergence, multi-spectral adaptive optics scanning laser ophthalmoscope with diffraction-limited illumination and collection[J]. Biomedical Optics Express, 11, 1617-1632(2020).
[68] Martin J A, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity[J]. Ophthalmology, 112, 2219-2224(2005).
[69] Bowers N R, Boehm A E, Roorda A. The effects of fixational tremor on the retinal image[J]. Journal of Vision, 19, 8(2019).
[70] Bowers N R, Gautier J, Lin S et al. Fixational eye movements in passive versus active sustained fixation tasks[J]. Journal of Vision, 21, 16(2021).
[71] Hammer D X, Ferguson R D, Bigelow C E et al. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging[J]. Optics Express, 14, 3354-3367(2006).
[72] Burns S A, Tumbar R, Elsner A E et al. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope[J]. Journal of the Optical Society of America A, 24, 1313-1326(2007).
[73] Ferguson R D, Zhong Z Y, Hammer D X et al. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking[J]. Journal of the Optical Society of America A, 27, A265-A277(2010).
[74] Chui T Y P, Vannasdale D A, Burns S A. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope[J]. Biomedical Optics Express, 3, 2537-2549(2012).
[75] Chui T Y P, Gast T J, Burns S A. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy[J]. Investigative Ophthalmology & Visual Science, 54, 7115-7124(2013).
[76] Zhong Z Y, Petrig B L, Qi X F et al. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy[J]. Optics Express, 16, 12746-12756(2008).
[77] Zhong Z Y, Song H X, Chui T Y P et al. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels[J]. Investigative Ophthalmology & Visual Science, 52, 4151-4157(2011).
[78] Song H X, Zhao Y M, Qi X F et al. Stokes vector analysis of adaptive optics images of the retina[J]. Optics Letters, 33, 137-139(2008).
[79] Song H X, Qi X F, Zou W Y et al. Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope[J]. Optics Express, 18, 21892-21904(2010).
[80] de Castro A, Huang G, Sawides L et al. Rapid high resolution imaging with a dual-channel scanning technique[J]. Optics Letters, 41, 1881-1884(2016).
[81] Mujat M, Ferguson R D, Iftimia N et al. Compact adaptive optics line scanning ophthalmoscope[J]. Optics Express, 17, 10242-10258(2009).
[82] Luo T, Warner R L, Sapoznik K A et al. Template free eye motion correction for scanning systems[J]. Optics Letters, 46, 753-756(2021).
[83] Li H, Yang H S, Shi G H et al. Adaptive optics retinal image registration from scale-invariant feature transform[J]. Optik, 122, 839-841(2011).
[84] Li H, Lu J, Shi G H et al. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm[J]. Biomedical Optics Express, 1, 31-40(2010).
[85] Li H, Lu J, Shi G H et al. Automatic montage of retinal images in adaptive optics confocal scanning laser ophthalmoscope[J]. Optical Engineering, 51, 057008(2012).
[86] He Y, Deng G H, Wei L, Luo Q M, Li L Z, Harrison D K et al. Design of a compact, bimorph deformable mirror-based adaptive optics scanning laser ophthalmoscope[M]. Oxygen transport to tissue XXXVIII. Advances in experimental medicine and biology, 923, 375-383(2016).
[87] Wang Y Y, He Y, Wei L et al. Bimorph deformable mirror based adaptive optics scanning laser ophthalmoscope for retina imaging in vivo[J]. Chinese Optics Letters, 15, 121102(2017).
[88] Laslandes M, Salas M, Hitzenberger C K et al. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy[J]. Biomedical Optics Express, 8, 4811-4826(2017).
[89] Roorda A, Williams D R. Optical fiber properties of individual human cones[J]. Journal of Vision, 2, 404-412(2002).
[90] Meadway A, Sincich L C. Light reflectivity and interference in cone photoreceptors[J]. Biomedical Optics Express, 10, 6531-6554(2019).
[91] Chiu S J, Lokhnygina Y, Dubis A M et al. Automatic cone photoreceptor segmentation using graph theory and dynamic programming[J]. Biomedical Optics Express, 4, 924-937(2013).
[92] Chen Y W, He Y, Wang J et al. Automated superpixels-based identification and mosaicking of cone photoreceptor cells for adaptive optics scanning laser ophthalmoscope[J]. Chinese Optics Letters, 18, 101701(2020).
[93] Cooper R F, Wilk M A, Tarima S et al. Evaluating descriptive metrics of the human cone mosaic[J]. Investigative Ophthalmology & Visual Science, 57, 2992-3001(2016).
[94] Wells-Gray E M, Choi S S, Bries A et al. Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy[J]. Eye, 30, 1135-1143(2016).
[95] Sawides L, de Castro A, Burns S A. The organization of the cone photoreceptor mosaic measured in the living human retina[J]. Vision Research, 132, 34-44(2017).
[96] Pinhas A, Dubow M, Shah N et al. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography[J]. Biomedical Optics Express, 4, 1305-1317(2013).
[97] Gu B Y, Wang X L, Twa M D et al. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging[J]. Biomedical Optics Express, 9, 3653-3677(2018).
[98] Sulai Y N, Scoles D, Harvey Z et al. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope[J]. Journal of the Optical Society of America A, 31, 569-579(2014).
[99] Chui T Y P, Mo S, Krawitz B et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy[J]. International Journal of Retina and Vitreous, 2, 11(2016).
[100] Hillard J G, Gast T J, Chui T Y P et al. Retinal arterioles in hypo-, normo-, and hypertensive subjects measured using adaptive optics[J]. Translational Vision Science & Technology, 5, 16(2016).
[101] Arichika S, Uji A, Murakami T et al. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy[J]. The British Journal of Ophthalmology, 101, 69-74(2017).
[102] Arichika S, Uji A, Ooto S et al. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy[J]. Scientific Reports, 5, 12283(2015).
[103] Chui T Y P, Pinhas A, Gan A et al. Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy[J]. Ophthalmic & Physiological Optics, 36, 290-302(2016).
[104] Pinhas A, Dubow M, Shah N et al. Fellow eye changes in patients with nonischemic central retinal vein occlusion: assessment of perfused foveal microvascular density and identification of nonperfused capillaries[J]. Retina, 35, 2028-2036(2015).
[105] Nesper P L, Scarinci F, Fawzi A A. Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia[J]. PLoS One, 12, e0169926(2017).
[106] Takayama K, Ooto S, Hangai M et al. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy[J]. PLoS One, 7, e33158(2012).
[107] da Pozzo S, Marchesan R, Ravalico G. Scanning laser polarimetry-a review[J]. Clinical & Experimental Ophthalmology, 37, 68-80(2009).
[108] Scoles D, Higgins B P, Cooper R F et al. Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease[J]. Investigative Ophthalmology & Visual Science, 55, 4015-4029(2014).
[109] Cheong S K, Strazzeri J M, Williams D R et al. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice[J]. PLoS One, 13, e0194947(2018).
[110] Geng Y, Dubra A, Yin L et al. Adaptive optics retinal imaging in the living mouse eye[J]. Biomedical Optics Express, 3, 715-734(2012).
[111] Yin L, Geng Y, Osakada F et al. Imaging light responses of retinal ganglion cells in the living mouse eye[J]. Journal of Neurophysiology, 109, 2415-2421(2013).
[112] Yin L, Masella B, Dalkara D et al. Imaging light responses of foveal ganglion cells in the living macaque eye[J]. The Journal of Neuroscience, 34, 6596-6605(2014).
[113] Akagi T, Hangai M, Takayama K et al. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy[J]. Investigative Ophthalmology & Visual Science, 53, 4111-4119(2012).
[114] Sabesan R, Schmidt B P, Tuten W S et al. The elementary representation of spatial and color vision in the human retina[J]. Science Advances, 2, e1600797(2016).
[115] Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors[J]. Investigative Ophthalmology & Visual Science, 49, 713-719(2008).
[116] Pircher M, Kroisamer J S, Felberer F et al. Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT[J]. Biomedical Optics Express, 2, 100-112(2010).
[117] Cooper R F, Dubis A M, Pavaskar A et al. Spatial and temporal variation of rod photoreceptor reflectance in the human retina[J]. Biomedical Optics Express, 2, 2577-2589(2011).
[118] Rha J, Schroeder B, Godara P et al. Variable optical activation of human cone photoreceptors visualized using a short coherence light source[J]. Optics Letters, 34, 3782-3784(2009).
[119] Tuten W S, Harmening W M, Sabesan R et al. Spatiochromatic interactions between individual cone photoreceptors in the human retina[J]. The Journal of Neuroscience, 37, 9498-9509(2017).
[120] Domdei N, Domdei L, Reiniger J L et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics[J]. Biomedical Optics Express, 9, 157-172(2017).
[121] Schmidt B P, Boehm A E, Foote K G et al. The spectral identity of foveal cones is preserved in hue perception[J]. Journal of Vision, 18, 19(2018).
[122] Schmidt B P, Boehm A E, Tuten W S et al. Spatial summation of individual cones in human color vision[J]. PLoS One, 14, e0211397(2019).
[123] Warner R L, Gast T J, Sapoznik K A et al. Measuring temporal and spatial variability of red blood cell velocity in human retinal vessels[J]. Investigative Ophthalmology & Visual Science, 62, 29(2021).
[124] Duan A, Bedggood P A, Bui B V et al. Evidence of flicker-induced functional hyperaemia in the smallest vessels of the human retinal blood supply[J]. PLoS One, 11, e0162621(2016).
[125] Newman E A. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature[J]. Journal of Cerebral Blood Flow and Metabolism, 33, 1685-1695(2013).
[126] Smith M H, Denninghoff K R, Hillman L W et al. Oxygen saturation measurements of blood in retinal vessels during blood loss[J]. Journal of Biomedical Optics, 3, 296-303(1998).
[127] Delori F C. Noninvasive technique for oximetry of blood in retinal vessels[J]. Applied Optics, 27, 1113-1125(1988).
[128] Yoneya S, Saito T, Nishiyama Y et al. Retinal oxygen saturation levels in patients with central retinal vein occlusion3[J]. Ophthalmology, 109, 1521-1526(2002).
[129] Stefansson E, Landers M B, Wolbarsht M L. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies[J]. Ophthalmic Surgery, 14, 209-226(1983).
[130] Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors[J]. Experimental Eye Research, 83, 473-483(2006).
[131] Akondi V, Kowalski B, Burns S A et al. Dynamic distortion in resonant galvanometric optical scanners[J]. Optica, 7, 1506-1513(2020).
[132] DuBose T, Nankivil D, LaRocca F et al. Handheld adaptive optics scanning laser ophthalmoscope[J]. Optica, 5, 1027-1036(2018).
[133] Hofer H, Sredar N, Queener H et al. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye[J]. Optics Express, 19, 14160-14171(2011).
[134] Adie S G, Graf B W, Ahmad A et al. Computational adaptive optics for broadband optical interferometric tomography of biological tissue[J]. Proceedings of the National Academy of Science, 109, 7175-7180(2012).
[135] Furieri T, Bassi A, Bonora S. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics[J]. Journal of Biophotonics, 16, e202300104(2023).
[136] Davidson B, Kalitzeos A, Carroll J et al. Fast adaptive optics scanning light ophthalmoscope retinal montaging[J]. Biomedical Optics Express, 9, 4317-4328(2018).
[137] Chen M, Cooper R F, Gee J C et al. Automatic longitudinal montaging of adaptive optics retinal images using constellation matching[J]. Biomedical Optics Express, 10, 6476-6496(2019).
[138] Park J H, Kong L J, Zhou Y F et al. Large-field-of-view imaging by multi-pupil adaptive optics[J]. Nature Methods, 14, 581-583(2017).
[139] Salmon A E, Cooper R F, Chen M et al. Automated image processing pipeline for adaptive optics scanning light ophthalmoscopy[J]. Biomedical Optics Express, 12, 3142-3168(2021).
[140] Lu R W, Aguilera N, Liu T et al. In-vivo sub-diffraction adaptive optics imaging of photoreceptors in the human eye with annular pupil illumination and sub-Airy detection[J]. Optica, 8, 333-343(2021).
[141] Lu Y M, Son T, Kim T H et al. Virtually structured detection enables super-resolution ophthalmoscopy of rod and cone photoreceptors in human retina[J]. Quantitative Imaging in Medicine and Surgery, 11, 1060-1069(2021).
[142] Mujat M, Ferguson R D, Patel A H et al. High resolution multimodal clinical ophthalmic imaging system[J]. Optics Express, 18, 11607-11621(2010).
[143] Viola F, Barteselli G, DellʼArti L et al. Multimodal imaging in deferoxamine retinopathy[J]. Retina, 34, 1428-1438(2014).
[144] Acón D, Wu L. Multimodal imaging in diabetic macular edema[J]. Asia-Pacific Journal of Ophthalmology, 7, 22-27(2018).
[145] Paavo M, Lee W, Parmann R et al. Insights into PROM1-macular disease using multimodal imaging[J]. Investigative Ophthalmology & Visual Science, 64, 27(2023).
[146] Williams D R, Burns S A, Miller D T et al. Evolution of adaptive optics retinal imaging[J]. Biomedical Optics Express, 14, 1307-1338(2023).
[147] Kesim C, Bektas S N, Kulali Z et al. Henle fiber layer mapping with directional optical coherence tomography[J]. Retina, 42, 1780-1787(2022).
[148] Griffin S M, McDonald H R, Johnson R N et al. Fingerprint sign of the henle fiber layer[J]. Retina, 41, 381-386(2021).
[149] Zhang T W, Kho A M, Srinivasan V J. In vivo morphometry of inner plexiform layer (IPL) stratification in the human retina with visible light optical coherence tomography[J]. Frontiers in Cellular Neuroscience, 15, 655096(2021).
[150] Liu Z L, Kurokawa K, Zhang F R et al. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 12803-12808(2017).
[151] Pfäffle C, Spahr H, Gercke K et al. Phase-sensitive measurements of depth-dependent signal transduction in the inner plexiform layer[J]. Frontiers in Medicine, 9, 885187(2022).
[152] Bigelow C E, Iftimia N V, Ferguson R D et al. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging[J]. Journal of the Optical Society of America A, 24, 1327-1336(2007).
[153] Liu Z L, Zhang F R, Zucca K et al. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina[J]. Biomedical Optics Express, 13, 5860-5878(2022).
[154] Azzolini C, Di Nicola M, Pozzo Giuffrida F et al. Retromode scanning laser ophthalmoscopy for choroidal nevi: a preliminary study[J]. Life, 13, 1253(2023).
[155] Mainster M A, Desmettre T, Querques G et al. Scanning laser ophthalmoscopy retroillumination: applications and illusions[J]. International Journal of Retina and Vitreous, 8, 71(2022).
[156] Sredar N, Razeen M, Kowalski B et al. Comparison of confocal and non-confocal split-detection cone photoreceptor imaging[J]. Biomedical Optics Express, 12, 737-755(2021).
[157] Song W, Wei Q, Liu T et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform[J]. Journal of Biomedical Optics, 17, 061206(2012).
[158] Zhao P Y, Chen C J. Progress of multimodal photoacoustic imaging and its application in ophthalmology[J]. Laser & Optoelectronics Progress, 59, 0617014(2022).
[159] Schweitzer D, Haueisen J, Klemm M. Suppression of natural lens fluorescence in fundus autofluorescence measurements: review of hardware solutions[J]. Biomedical Optics Express, 13, 5151-5170(2022).
[160] Terasaki H, Sonoda S, Tomita M et al. Recent advances and clinical application of color scanning laser ophthalmoscope[J]. Journal of Clinical Medicine, 10, 718(2021).
[161] Gupta K, Agarwal A, Arora A et al. Multicolor confocal scanning laser ophthalmoscope imaging in posterior uveitis[J]. Retina, 42, 1356-1363(2022).
[162] Jayabalan G S, Wu Y K, Bille J F et al. In vivo two-photon imaging of retina in rabbits and rats[J]. Experimental Eye Research, 166, 40-48(2018).
[163] Palczewska G, Stremplewski P, Suh S et al. Two-photon imaging of the mammalian retina with ultrafast pulsing laser[J]. JCI Insight, 3, e121555(2018).
[164] Palczewska G, Boguslawski J, Stremplewski P et al. Noninvasive two-photon optical biopsy of retinal fluorophores[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 22532-22543(2020).
[165] Boguslawski J, Palczewska G, Tomczewski S et al. In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope[J]. The Journal of Clinical Investigation, 132, e154218(2022).
[166] Aghigh A, Bancelin S, Rivard M et al. Second harmonic generation microscopy: a powerful tool for bio-imaging[J]. Biophysical Reviews, 15, 43-70(2023).
[167] Miller D R, Jarrett J W, Hassan A M et al. Deep tissue imaging with multiphoton fluorescence microscopy[J]. Current Opinion in Biomedical Engineering, 4, 32-39(2017).
[168] Hadad B, Froim S, Yosef E et al. Deep learning in optics: a tutorial[J]. Journal of Optics, 25, 123501(2023).
[169] Côté G, Lalonde J F, Thibault S. Deep learning-enabled framework for automatic lens design starting point generation[J]. Optics Express, 29, 3841-3854(2021).
[170] Li W Z, Jia X D, Hsu Y M et al. A novel methodology for lens matching in compact lens module assembly[J]. IEEE Transactions on Automation Science and Engineering, 20, 741-750(2023).
[171] Hegde R S. Accelerating optics design optimizations with deep learning[J]. Optical Engineering, 58, 065103(2019).
[172] Guo Y M, Zhong L B, Min L et al. Adaptive optics based on machine learning: a review[J]. Opto-Electronic Advances, 5, 200082(2022).
[173] Zhang B W, Zhu J Z, Si K et al. Deep learning assisted zonal adaptive aberration correction[J]. Frontiers in Physics, 8, 634(2021).
[174] Hu S W, Hu L J, Gong W et al. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Frontiers of Information Technology & Electronic Engineering, 22, 1277-1288(2021).
[175] Li Y S, Yue D, He Y H. Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning[J]. Applied Optics, 61, 4168-4176(2022).
[176] Durech E, Newberry W, Franke J et al. Wavefront sensor-less adaptive optics using deep reinforcement learning[J]. Biomedical Optics Express, 12, 5423-5438(2021).
[177] Wan C, Zhou X T, You Q J et al. Retinal image enhancement using cycle-constraint adversarial network[J]. Frontiers in Medicine, 8, 793726(2022).
[178] Abbood S H, Hamed H N A, Rahim M S M et al. Hybrid retinal image enhancement algorithm for diabetic retinopathy diagnostic using deep learning model[J]. IEEE Access, 10, 73079-73086(2022).
[179] Kadomoto S, Uji A, Muraoka Y et al. Enhanced visualization of retinal microvasculature in optical coherence tomography angiography imaging via deep learning[J]. Journal of Clinical Medicine, 9, 1322(2020).
[180] Devi L M, Wahengbam K, Singh A D. Dehazing buried tissues in retinal fundus images using a multiple radiance pre-processing with deep learning based multiple feature-fusion[J]. Optics & Laser Technology, 138, 106908(2021).
[181] Subha K J, Rajavel R, Paulchamy B. Improved ensemble deep learning based retinal disease detection using image processing[J]. Journal of Intelligent & Fuzzy Systems, 45, 1119-1130(2023).
[182] Gupta I K, Choubey A, Choubey S. Mayfly optimization with deep learning enabled retinal fundus image classification model[J]. Computers and Electrical Engineering, 102, 108176(2022).
[183] Cherukuri V, Kumar B G V, Bala R et al. Deep retinal image segmentation with regularization under geometric priors[J]. IEEE Transactions on Image Processing, 29, 2552-2567(2019).
[184] Boudegga H, Elloumi Y, Akil M et al. Fast and efficient retinal blood vessel segmentation method based on deep learning network[J]. Computerized Medical Imaging and Graphics, 90, 101902(2021).
[185] Zhang Q, Sampani K, Xu M J et al. AOSLO-net: a deep learning-based method for automatic segmentation of retinal microaneurysms from adaptive optics scanning laser ophthalmoscopy images[J]. Translational Vision Science & Technology, 11, 7(2022).
[186] Cunefare D, Huckenpahler A L, Patterson E J et al. RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images[J]. Biomedical Optics Express, 10, 3815-3832(2019).
[187] Cunefare D, Langlo C S, Patterson E J et al. Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of Achromatopsia[J]. Biomedical Optics Express, 9, 3740-3756(2018).
Get Citation
Copy Citation Text
Xiadi Ye, Jiangjie Huang, Wen Kong, Lina Xing, Yi He, Guohua Shi. Research Progress and Application of Confocal Scanning Laser Ophthalmoscope (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000003
Category: Reviews
Received: Jan. 3, 2024
Accepted: Jan. 24, 2024
Published Online: May. 9, 2024
The Author Email: Yi He (heyi@sibet.ac.cn)
CSTR:32186.14.LOP240437