Chinese Journal of Lasers, Volume. 51, Issue 21, 2107102(2024)

Application of Segment Anything Model in Medical Image Segmentation

Tong Wu1,2, Haoji Hu1,2、*, Yang Feng3, Qiong Luo4, Dong Xu5,6, Weizeng Zheng7, Neng Jin4, Chen Yang5,6, and Jincao Yao5,6
Author Affiliations
  • 1University of Illinois Urbana-Champaign Institute, Zhejiang University, Hangzhou 314400, Zhejiang , China
  • 2College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 3Angelalign Research Institute, Anglealign Technology Inc., 200433, Shanghai , China
  • 4Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, Zhejiang , China
  • 5Zhejiang Cancer Hospital, Hangzhou 331022, Zhejiang , China
  • 6Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, Zhejiang , China
  • 7Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, Zhejiang , China
  • show less
    References(123)

    [9] Ramesh A, Pavlov M, Goh G et al. Zero-shot text-to-image generation[C]. Virtual Event. [S.l.: s.n.], 8821-8831(2021).

    [13] Wang D, Zhang J, Du B et al. SAMRS: scaling-up remote sensing segmentation dataset with segment anything model[C]. 16(2023).

    [36] Menze B H, Jakab A, Bauer S et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 34, 1993-2024(2015).

    [54] Antonelli M, Reinke A, Bakas S et al. The medical segmentation decathlon[J]. Nature Communications, 13, 4128(2022).

    [55] Bilic P, Christ P, Li H B et al. The liver tumor segmentation benchmark (LiTS)[J]. Medical Image Analysis, 84, 102680(2023).

    [63] Jaeger S, Candemir S, Antani S et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. Quantitative Imaging in Medicine and Surgery, 4, 475-477(2014).

    [70] Zhou Z, Zhang S J, Zhang X Y. Improved U-type neural network method for medical nuclear image segmentation[J]. Journal of Chinese Computer Systems, 44, 110-116(2023).

    [109] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C], 1050-1059(2016).

    [123] Porwal P, Pachade S, Kokare M et al. IDRiD: diabetic retinopathy-segmentation and grading challenge[J]. Medical Image Analysis, 59, 101561(2020).

    Tools

    Get Citation

    Copy Citation Text

    Tong Wu, Haoji Hu, Yang Feng, Qiong Luo, Dong Xu, Weizeng Zheng, Neng Jin, Chen Yang, Jincao Yao. Application of Segment Anything Model in Medical Image Segmentation[J]. Chinese Journal of Lasers, 2024, 51(21): 2107102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Feb. 26, 2024

    Accepted: May. 10, 2024

    Published Online: Oct. 31, 2024

    The Author Email: Hu Haoji (haoji_hu@zju.edu.cn)

    DOI:10.3788/CJL240614

    CSTR:32183.14.CJL240614

    Topics