Chinese Journal of Lasers, Volume. 51, Issue 21, 2107102(2024)

Application of Segment Anything Model in Medical Image Segmentation

Tong Wu1,2, Haoji Hu1,2、*, Yang Feng3, Qiong Luo4, Dong Xu5,6, Weizeng Zheng7, Neng Jin4, Chen Yang5,6, and Jincao Yao5,6
Author Affiliations
  • 1University of Illinois Urbana-Champaign Institute, Zhejiang University, Hangzhou 314400, Zhejiang , China
  • 2College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 3Angelalign Research Institute, Anglealign Technology Inc., 200433, Shanghai , China
  • 4Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, Zhejiang , China
  • 5Zhejiang Cancer Hospital, Hangzhou 331022, Zhejiang , China
  • 6Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, Zhejiang , China
  • 7Department of Radiology, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, Zhejiang , China
  • show less
    Figures & Tables(8)
    Overview of the architecture of SAM
    Architecture of medical SAM adapter (MSA)[72]
    Architecture of SemiSAM[122]
    Architecture of ASLseg[123]
    Segmentation results of SAM, MedSAM, and SAM-Med2D networks on the pregnant pelvis MRI dataset (top row) and the ABUS tumor dataset (bottom row) under the condition of box and point prompts
    • Table 1. Experimental analysis related to the direct application of SAM on medical datasets (In the performance column, ">" means better than, "<" means worse than)

      View table

      Table 1. Experimental analysis related to the direct application of SAM on medical datasets (In the performance column, ">" means better than, "<" means worse than)

      Ref.ModalitySegmentation taskDatasetPromptPerformance
      27WSISkin cancer tumourTCGA2820 points>SOTA
      WSIGlomerular unit (CAP), glomerular tuft (TUFT), distal tubular (DT), proximal tubular (PT), arteries (VES), and peritubular capillaries (PTC)

      Private datasets

      (Using digital renal biopsies from the NEPTUNE study29

      Points<SOTA
      WSICell nucleiMoNuSeg30Points<SOTA
      31CTLiver tumourPrivate datasetsPoints<SOTA
      32CTTumourPrivate datasetsPoints<SOTA
      33CTAbdominal organsAMOS34Points, boxs<SOTA
      35MRIBrain tumourBraTS 36Verified that SAM can achieve high segmentation accuracy in expert-interactive workflows
      37MRIBrain tumourBraTS 36Points, boxs<SOTA
      38MRIBrainATLAS39, WMH40, and private datasetsBoxs>SOTA
      41UltrasoundBreast tumourBUSI42Verified that the ViT-L version of SAM has the best segmentation performance compared to other versions
      43EndoscopyPolypKvasir-SEG44, CVC-ClinicDB45,CVC-ColonDB46,ETIS47, and CVC30048Points<SOTA
      49Surgical imagesSurgical instrumentEndoVis50-51Points<SOTA
      Boxs>SOTA
      4CTLung nodulesCIR52Points, boxs<SOTA
      Pancreatic parenchyma and massPancreas53-54
      Liver tumorLiTS55
      MRIVentricular endocardium on cardiac MRIACDC56
      ProstateProstate57
      Left atriumLA58
      HippocampusHippo 54
      MRI, flairBrain tumorBraTS3659-60
      UltrasoundBreast tumorBUID42
      ColonoscopyPolypsKvasir44
      DermoscopySkin lesionISIC 61-62
      X-rayLungChest X-ray 63
      64CTLiver and liver tumorLiTs55Points, boxs

      <SOTA

      Verified that the box prompts-assisted results are best in most cases

      MRIHippocampusADNI65
      UltrasoundBreast tumourBUSI42
      Thyroid nodule and thyroid glandTN3K66
      EndoscopyPolypKvasir44,CVC-ClinicDB 45,CVC-ColonDB 46,CVC-30048, and ETIS47
      Foot ulcerFoot ulcer imagesFUSC67
      OCTMacular edemaOCT68
      X-rayLungCOVID-Lung69
    • Table 2. Segmentation capacity of SAM networks fine-tuned on medical datasets with different data volumes for two modal images

      View table

      Table 2. Segmentation capacity of SAM networks fine-tuned on medical datasets with different data volumes for two modal images

      NetworkMRIUltrasound
      Images in trainingDSC /%mIoU /%Images in trainingDSC /%mIoU /%
      SAM062.44±23.7761.13±23.47052.01±28.0340.01±25.93
      MedSAM36000071.63±8.8769.81±11.353000056.65±22.8042.85±21.19
      SAM-Med2D70000076.23±7.6071.08±9.2438000075.11±17.7962.78±18.83
    • Table 3. Comparison of segmentation effects on ABUS tumor dataset before and after combining MT and SAM

      View table

      Table 3. Comparison of segmentation effects on ABUS tumor dataset before and after combining MT and SAM

      MethodPromptDSC /%mIoU /%Accuracy /%HD95 /mm
      MTNone39.88±39.8233.52±34.8655.70±49.536.37±25.32
      MT+SAMPoint51.23±36.2142.54±31.2564.13±42.984.75±22.56
      MT+SAMPoint and box54.46±37.4445.08±29.3966.75±40.584.26±18.83
    Tools

    Get Citation

    Copy Citation Text

    Tong Wu, Haoji Hu, Yang Feng, Qiong Luo, Dong Xu, Weizeng Zheng, Neng Jin, Chen Yang, Jincao Yao. Application of Segment Anything Model in Medical Image Segmentation[J]. Chinese Journal of Lasers, 2024, 51(21): 2107102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Feb. 26, 2024

    Accepted: May. 10, 2024

    Published Online: Oct. 31, 2024

    The Author Email: Hu Haoji (haoji_hu@zju.edu.cn)

    DOI:10.3788/CJL240614

    CSTR:32183.14.CJL240614

    Topics