Chinese Journal of Lasers, Volume. 42, Issue 3, 303012(2015)
Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face
[1] [1] Schmidtke K, Flens F, Worrall A, et al.. 960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array (June 2013)[J]. J Lightwave Technol, 2013, 31(24): 3970-3975.
[2] [2] Taubenblatt M A. Optical interconnects for high-performance computing[J]. J Lightwave Technol, 2012, 30(4): 448-457.
[3] [3] Li Rongling, Shang Huiliang, Lei Yu, et al.. Design research of key enabling technologies for high-speed visible-light communication[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050003.
[4] [4] Hou Peipei, Zhi Yanan, Sun Jianfeng, et al.. Crossbar optical switching network[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010003.
[5] [5] Zhang X, Hosseini A, Lin X, et al.. Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and boardlevel optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401115.
[6] [6] Luo F, Cao M, Zhou X, et al.. 3D optical interconnect mesh network for on-board parallel multiprocessor system based on EOPCB [C]. SPIE, 2007, 6795: 67954V.
[7] [7] Jin W, Chiang K S, Lor K P, et al.. Industry compatible embossing process for the fabrication of waveguide-embedded optical printed circuit boards[J]. J Lightwave Technol, 2013, 31(24): 4045-4050.
[8] [8] Bamiedakis N, Penty R V, White I H. Compact multimode polymer waveguide bends for board-level optical interconnects[J]. J Lightwave Technol, 2013, 31(14): 2370-2375.
[9] [9] Doany F E, Schow C L, Baks C W, et al.. 160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOSbased transceivers[J]. IEEE Transactions on Advanced Packaging, 2009, 32(2): 345-359.
[10] [10] Tan M R, Rosenberg P K, Mathai S, et al.. Low cost, injection molded 120 Gbps optical backplane[C]. Optical Fiber Communication Conference, Optical Society of America, 2011. PDPA4.
[11] [11] Pitwon R C A, Hopkins K, Milward D, et al.. Passive assembly of parallel optical devices onto polymer-based optical printed circuit boards[J]. Circuit World, 2010, 36(4): 3-11.
[12] [12] Baghsiahi H, Wang K, Kandulski W, et al.. Optical waveguide end facet roughness and optical coupling loss[J]. J Lightwave Technol, 2013, 31(16): 2959-2968.
[13] [13] Q Xia, M Immonen, J Wu. Optical backplane demonstrator with 10 Gbps video transmission link on printed circuit board using optical waveguides[C]. International Microsystem Packaging Assembly and Circuits Technology Conference, 2013.
[14] [14] Papakonstantinou I, Selviah D R, Pitwon R C A, et al.. Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs[J]. IEEE Transactions on Advanced Packaging, 2008, 31(3): 502-511.
[15] [15] MICRO·CHEM. Developmental Products[OL]. http://www.microchem.com/Prod-LightLink.htm.[2014-12-19].
[16] [16] Zakariyah S S. Laser ablation for polymer waveguide fabrication[J]. Micromachining Techniques for Fabrication of Micro and Nano Structures, 2012, 6(1): 109-130.
[17] [17] Li Yu. The reasonable choice of sample length and evaluation length in roughness measurement[J]. Dongfang Electrical Machine, 2007, 35(4): 63-65.
[18] [18] Li Bokui. 3D roughness parameter arithmetic average deviation and root mean square deviation of law research[J]. Tool Engineering, 2008, 42(9): 107-110.
Get Citation
Copy Citation Text
Jia Nana, Deng Chuanlu, Pang Fufei, Gu Xin, Wang Tingyun. Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face[J]. Chinese Journal of Lasers, 2015, 42(3): 303012
Category: laser manufacturing
Received: Oct. 14, 2014
Accepted: --
Published Online: Feb. 3, 2015
The Author Email: Nana Jia (18817872809@163.com)