Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0615001(2025)
Three-Dimensional Unsupervised Domain Adaptation Method with Balanced Geometry Perception
[1] Hu C J, Liu J Z, Fang L. Unsupervised domain adaptation for outdoor point cloud semantic segmentation[J]. Computer and Modernization, 74-79, 86, 91(2024).
[3] Qin C, You H X, Wang L C et al. PointDAN: a multi-scale 3D domain adaption network for point cloud representation[C](2019).
[8] Zheng C J, Zheng Z. 3D point cloud classification based on maximum classifier discrepancy domain adaptation method[J]. Information and Control, 52, 588-597(2023).
[13] Zhang H Y, Cisse M, Danuphin Y N et al. mixup: beyond empirical risk minimization[C], 528-536(2018).
[19] Guo L L, Wang S L, Dai H S et al. Initial orbit determination for space-based optical surveillance of space debris[J]. Acta Optica Sinica, 44, 2412002(2024).
[20] Miao L Y, Li F. Retinal vessel segmentation based on dynamic feature graph convolutional network[J]. Chinese Journal of Lasers, 51, 1507202(2024).
Get Citation
Copy Citation Text
Yue Cai, Lei Guo, Zhongyu Chen, Xie Han, Shichao Jiao, Huiyan Han. Three-Dimensional Unsupervised Domain Adaptation Method with Balanced Geometry Perception[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0615001
Category: Machine Vision
Received: Jul. 4, 2024
Accepted: Jul. 29, 2024
Published Online: Mar. 12, 2025
The Author Email:
CSTR:32186.14.LOP241635