Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0615001(2025)

Three-Dimensional Unsupervised Domain Adaptation Method with Balanced Geometry Perception

Yue Cai1、*, Lei Guo1,2,3, Zhongyu Chen1, Xie Han1,2,3, Shichao Jiao1, and Huiyan Han1
Author Affiliations
  • 1School of Computer Science and Technology, North University of China, Taiyuan 030051, Shanxi , China
  • 2Shanxi Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, Shanxi , China
  • 3Shanxi Province's Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, Shanxi , China
  • show less
    Figures & Tables(10)
    Overall network structure
    Adaptive unsigned distance
    Results of DBSCAN clustering, (a) Ground truth provided by the dataset; (b) DBSCAN clustering effect
    Point cloud mix-up augment
    Visualization for the results of part segmentation
    Ablation experimentⅡ
    • Table 1. The mIoU of each method on the PointSegDA dataset

      View table

      Table 1. The mIoU of each method on the PointSegDA dataset

      MethodPointSegDA
      F→MF→AF→SM→FM→AM→SA→FA→MA→SS→FS→MS→AAvg
      Adapt260.170.565.354.049.162.844.235.435.163.870.163.856.5
      RS660.778.766.938.459.670.444.030.436.665.370.773.057.9
      DefRec1461.879.767.440.167.172.642.528.932.266.266.472.258.1
      MLSP960.080.965.540.467.370.845.431.138.472.566.674.859.5
      LST1761.880.368.556.660.867.852.338.641.166.667.468.060.8
      DGCNN+Aux763.376.669.362.565.172..751.747.446.873.763.972.363.8
      PC-Adapter1861.578.869.262.168.972.849.039.643.175.766.474.463.5
      Proposed method64.981.170.060.967.475.750.647.246.975.968.573.665.2
    • Table 2. The classification accuracy of each method on the PointDA-10 dataset

      View table

      Table 2. The classification accuracy of each method on the PointDA-10 dataset

      MethodPointDA-10
      M→SM→S*S→MS→S*S*→MS*→SAvg
      DANN574.842.157.550.943.771.656.8
      DefRec1481.751.878.654.573.771.168.6
      RS679.946.775.251.471.871.266.0
      PointDAN383.944.863.345.743.656.456.3
      PatchMixer1683.151.481.045.164.167.165.3
      PC-Adapter1883.358.277.553.773.775.470.3
      Proposed method84.856.377.756.678.776.871.8
    • Table 3. Ablation experiment Ⅰ

      View table

      Table 3. Ablation experiment Ⅰ

      MethodPointSegDA
      F→MF→AF→SM→FM→AM→SA→FA→MA→SS→FS→MS→AAvg
      S60.475.965.055.460.070.949.234.437.767.563.170.559.2
      S/T+Imp64.579.568.355.264.571.851.942.947.271.865.274.863.1
      S/T+Imp+Aug64.981.170.060.967.475.750.647.246.975.968.573.365.2
    • Table 4. Ablation experiment Ⅲ

      View table

      Table 4. Ablation experiment Ⅲ

      Remove noise pointsmIoU /%
      yes64.4
      no65.2
    Tools

    Get Citation

    Copy Citation Text

    Yue Cai, Lei Guo, Zhongyu Chen, Xie Han, Shichao Jiao, Huiyan Han. Three-Dimensional Unsupervised Domain Adaptation Method with Balanced Geometry Perception[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0615001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 4, 2024

    Accepted: Jul. 29, 2024

    Published Online: Mar. 12, 2025

    The Author Email:

    DOI:10.3788/LOP241635

    CSTR:32186.14.LOP241635

    Topics