Laser & Optoelectronics Progress, Volume. 60, Issue 14, 1428006(2023)

SLAM Algorithm with Tight Coupling of Vision and LiDAR Odometer

Wenhan Liu, Lingyu Sun, Qingxiang Li*, Xiaoyu Du, Wei Wang, and Hongliang Qin
Author Affiliations
  • School of Machanical Engineerings, Hebei University of Technology, Tianjin 300000, China
  • show less
    References(20)

    [1] Cadena C, Carlone L, Carrillo H et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 32, 1309-1332(2016).

    [2] Kohlbrecher S, von Stryk O, Meyer J et al. A flexible and scalable SLAM system with full 3D motion estimation[C], 155-160(2011).

    [3] Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 23, 34-46(2007).

    [4] Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time[C](2014).

    [5] Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C], 4758-4765(2018).

    [6] Chen W H, Liu H X, Yang L T et al. Research on improved LeGO-LOAM algorithm based on IMU tight coupling[J]. Application Research of Computers, 38, 1013-1016(2021).

    [7] Zhou Z Q, Liu F, Qu J J et al. Hybrid scanning matching algorithm based on tight coupling of IMU and lidar[J]. Computer Systems & Applications, 30, 203-209(2021).

    [9] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C], 3565-3572(2007).

    [10] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C], 225-234(2007).

    [11] Mur-Artal R, Tardós J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 33, 1255-1262(2017).

    [12] Campos C, Elvira R, Rodriguez J J G et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 37, 1874-1890(2021).

    [13] Qin T, Li P L, Shen S J. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 34, 1004-1020(2018).

    [14] Leutenegger S, Furgale P, Rabaud V et al. Keyframe-based visual-inertial SLAM using nonlinear optimization[C](2013).

    [15] Graeter J, Wilczynski A, Lauer M. LIMO: lidar-monocular visual odometry[C], 7872-7879(2018).

    [17] Zhang J, Singh S. Visual-lidar odometry and mapping: low-drift, robust, and fast[C], 2174-2181(2015).

    [18] Jiang L, Liu Q, Lei B et al. Identifying and constructing semantic map based on laser and vision fusion for improving localization performance[J]. Chinese Journal of Lasers, 49, 1810003(2022).

    [19] Yan X B, Peng D G, Qi E J. Research on ground-plane-based monocular aided LiDAR SLAM[J]. Acta Optica Sinica, 40, 2428002(2020).

    [20] Kim G, Kim A. Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map[C], 4802-4809(2018).

    Tools

    Get Citation

    Copy Citation Text

    Wenhan Liu, Lingyu Sun, Qingxiang Li, Xiaoyu Du, Wei Wang, Hongliang Qin. SLAM Algorithm with Tight Coupling of Vision and LiDAR Odometer[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1428006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 6, 2022

    Accepted: Aug. 12, 2022

    Published Online: Jul. 17, 2023

    The Author Email: Qingxiang Li (734579675@qq.com)

    DOI:10.3788/LOP221767

    Topics