Laser & Optoelectronics Progress, Volume. 57, Issue 11, 111414(2020)
Femtosecond Laser Processing of Graphene and Its Application
[1] Zhu Y W, Murali S, Cai W W et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 22, 3906-3924(2010).
[2] Min H, Bistritzer R, Su J J et al. Room-temperature superfluidity in graphene bilayers[J]. Physical Review B, 78, 121401(2008).
[3] Lee C, Wei X, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).
[4] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).
[5] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).
[6] Luo B, Wang B, Li X L et al. Graphene-confined Sn nanosheets with enhanced lithium storage capability[J]. Advanced Materials, 24, 3538-3543(2012).
[7] Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 10, 4285-4294(2010).
[8] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).
[9] Wallace P R. The band theory of graphite[J]. Physical Review, 71, 622(1947).
[10] Ren W C, Cheng H M. The global growth ofgraphene[J]. Nature Nanotechnology, 9, 726-730(2014).
[11] Shi X S. Novel methods for femtosecond laser micromaching of controllable micro-/nano- structures and applications based on electrons dynamics control[D]. Beijing: Beijing Institute of Technology, 1(2016).
[12] Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 22, 2392-2415(2010).
[14] Chang H X, Wang G F, Yang A et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode[J]. Advanced Functional Materials, 20, 2893-2902(2010).
[19] Yu X W, Cheng H H, Zhang M et al. Graphene-based smart materials[J]. Nature Reviews Materials, 2, 17046(2017).
[20] Han B, Zhang Y L, Zhu L et al. Plasmonic-assisted graphene oxide artificial muscles[J]. Advanced Materials, 1806386(2018).
[21] Hu Y, Wu G, Lan T et al. Agraphene-based bimorph structure for design of high performance photoactuators[J]. Advanced Materials, 27, 7867-7873(2015).
[23] Ji L W, Lin Z, Alcoutlabi M et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 4, 2682-2699(2011).
[24] Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 4, 1113-1132(2011).
[26] Yoo J H, Bin In J, Bok Park J et al. Graphene folds by femtosecond laser ablation[J]. Applied Physics Letters, 100, 233124(2012).
[27] Park J B, Xiong W, Gao Y et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 98, 123109(2011).
[28] Xiong W, Zhou Y S, Hou W J et al. Direct writing of graphene patterns on insulating substrates under ambient conditions[J]. Scientific Reports, 4, 4892(2015).
[29] Roberts A, Cormode D, Reynolds C et al. Response of graphene to femtosecond high-intensity laser irradiation[J]. Applied Physics Letters, 99, 051912(2011).
[30] Currie M, Caldwell J D, Bezares F J et al. Quantifying pulsed laser induced damage to graphene[J]. Applied Physics Letters, 99, 211909(2011).
[31] Kang S, Evans C C, Shukla S et al. Patterning and reduction of graphene oxide using femtosecond-laser irradiation[J]. Optics & Laser Technology, 103, 340-345(2018).
[32] Kasischke M, Maragkaki S, Volz S et al. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses[J]. Applied Surface Science, 445, 197-203(2018).
[33] Yan R Y, Jiang L, Li X et al. An abnormal non-incubation effect in femtosecond laser processing of freestanding reduced graphene oxide paper[J]. Journal of Physics D: Applied Physics, 50, 185302(2017).
[34] Shi X S, Li X, Jiang L et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 5, 17557(2015).
[35] Dorin B, Parkinson P, Scully P. Direct laser write process for 3D conductive carbon circuits in polyimide[J]. Journal of Materials Chemistry C, 5, 4923-4930(2017).
[36] Wang S T, Yu Y C, Ma D L et al. High performance hybrid supercapacitors on flexible polyimide sheets using femtosecond laser 3D writing[J]. Journal of Laser Applications, 29, 022203(2017).
[37] Antanavi iūt I, Šimatonis L, Ul inas O et al. Femtosecond laser micro-machined polyimide films for cell scaffold applications[J]. Journal of Tissue Engineering and Regenerative Medicine, 12, e760-e773(2018).
[38] Messina E, Compagnini G. D'Urso L, et al. Size distribution and particle shape in silver colloids prepared by laser ablation in water[J]. Radiation Effects and Defects in Solids, 165, 579-583(2010).
[39] Compagnini G, Scalisi A A, Puglisi O et al. Synthesis of gold colloids by laser ablation in thiol-alkane solutions[J]. Journal of Materials Research, 19, 2795-2798(2004).
[40] Li B, Jiang L, Li X et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water[J]. Scientific Reports, 7, 11182(2017).
[41] Kan Z, Zhang Q, Ren H Z et al. Femtosecond laser induced formation of graphene nanostructures in water and their field emission properties[J]. Materials Research Express, 6, 085016(2019).
[42] Yang B, Dong N N, Wang S B. Qualitative analysis of reduction degree in reduced graphene oxide solution by femtosecond laser-induced breakdown spectroscopy[J]. IOP Conference Series: Materials Science and Engineering, 382, 022020(2018).
[43] Liu Q, Guo B D, Rao Z Y et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 13, 2436-2441(2013).
[44] Russo P, Liang R, Jabari E et al. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions[J]. Nanoscale, 8, 8863-8877(2016).
[47] Tielrooij K J, Piatkowski L, Massicotte M et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating[J]. Nature Nanotechnology, 10, 437-443(2015).
[48] Yoo J H, Park J B, Ahn S et al. Laser-induced direct graphene patterning and simultaneous transferring method for graphene sensor platform[J]. Small, 9, 4269-4275(2013).
[49] Paula K T, Gaál G. Almeida G F B, et al. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications[J]. Optics & Laser Technology, 101, 74-79(2018).
[50] Li L, Feng Z Y, Qiao X G et al. Ultrahigh sensitive temperature sensor based on Fabry-Pérot interference assisted by a graphene diaphragm[J]. IEEE Sensors Journal, 15, 505-509(2015).
[51] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).
[52] Wang S T, Yu Y C, Li R Z et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets[J]. Electrochimica Acta, 241, 153-161(2017).
[53] Shen D Z, Zou G S, Liu L et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces, 10, 5404-5412(2018).
[54] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper usingin situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).
Get Citation
Copy Citation Text
Yongjiu Yuan, Xin Li. Femtosecond Laser Processing of Graphene and Its Application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414
Category: Lasers and Laser Optics
Received: Mar. 24, 2020
Accepted: Apr. 23, 2020
Published Online: Jun. 2, 2020
The Author Email: Li Xin (lixin02@bit.edu.cn)