Optics and Precision Engineering, Volume. 33, Issue 11, 1700(2025)
Thermal field electron gun immersed in magnetic lens field
[1] 朱建华, 容萍, 任帅. ZnO纳米棒/Bi2S3量子点异质结的制备及光电探测性能研究[J]. 光学 精密工程, 30, 1915-1923(2022).
ZHU J H, RONG P, REN SH et al. Preparation and photodetection performance of ZnO nanorods/Bi2S3 quantum dots heterojunction[J]. Opt. Precision Eng., 30, 1915-1923(2022).
[2] 梁惠康, 段辉高. 电子束光刻设备发展现状及展望[J]. 科技导报, 40, 33-44(2022).
LIANG H K, DUAN H G. Electron beam lithography system: Progress and outlook[J]. Science & Technology Review, 40, 33-44(2022).
[3] 张利新, 孙博彤, 刘星云. 微型阵列束闸设计与实验[J]. 光学 精密工程, 32, 2061-2069(2024).
ZHANG L X, SUN B T, LIU X Y et al. Design and experiment of micro-arrayed beam blanker[J]. Opt. Precision Eng., 32, 2061-2069(2024).
[4] 段辉高, 戴彭, 张轼. 复杂图案轮廓曝光版图的生成及工艺实现[J]. 光学 精密工程, 27, 584-593(2019).
DUAN H G, DAI P, ZHANG SH et al. Realization of complex patterns
[5] JIANG J H, SUN W Q, WANG ZH et al. Localized electron beam inspection equipment for yield monitoring in integrated circuits manufacture[J]. Metrology & Measurement Technology, 43, 169-174(2023).
蒋俊海, 孙伟强, 王振. 用于集成电路制造中良率监控的国产化电子束缺陷检测设备[J]. 计测技术, 43, 169-174(2023).
[6] TUGGLE D, SWANSON L W, ORLOFF J. Application of a thermal field emission source for high resolution, high current
[7] CHEN W X, XU J, ZHANG H Z et al. Advances in electron Gun theory research[J]. Journal of Chinese Electron Microscopy Society, 25, 455-462(2006).
陈文雄, 徐军, 张会珍. 电子枪理论研究的新进展[J]. 电子显微学报, 25, 455-462(2006).
[8] SAITO K, MORITA H, SHIMAZU N et al. New Design for a Field Emission Electron Gun Immersed in a Magnetic Lens Field[M]. SPIE(1995).
[9] SAITO K. Accurate electron ray tracing for analysis of electron guns immersed in a magnetic-lens field[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363, 48-53(1995).
[10] TAMURA K, IKUTA T, SHIMIZU R et al. Performance evaluation of the magnetic field immersion type field emission Gun by boundary element method[J]. Physics Procedia, 1, 43-49(2008).
[11] Cleaver J R A. Field emission electron gun systems incorporating single-pole magnetic lenses[J]. Optik, 52, 293-303(1979).
[12] TROYON M. Magnetic field emission Gun with zirconiated emitter: Performances at low voltage[J]. Ultramicroscopy, 28, 98-102(1989).
[13] YAMAZAKI Y, MIYOSHI M, NAGAI T et al. Development of the field emission electron Gun integrated in the sputter ion pump[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 9, 2967-2971(1991).
[14] DELONG A, CHMELÍK J, KOLARIK V et al. A new design of field emission electron Gun with a magnetic lens[J]. Optik, 81, 103-108(1989).
[15] KASUYA K, KAWASAKI T, MORIYA N et al. Magnetic field superimposed cold field emission Gun under extreme-high vacuum[J]. Journal of Vacuum Science & Technology B, 32(2014).
[16] URBAŃSKI P, SZYSZKA P, BIAŁAS M et al. Point field emission electron source with a magnetically focused electron beam[J]. Ultramicroscopy, 258, 113911(2024).
[17] SAKUDA Y, ISHIZAKI M, TOGASHI T et al.
[19] 姚骏恩, 杨凯. 磁浸没场发射电子探针系统探讨[J]. 光学学报, 5, 348-355(1985).
YAO J E, YANG K. Magnetic field superimposed field emission electron Gun system[J]. Acta Optica Sinica, 5, 348-355(1985).
[20] 程敏, 唐天同. 磁浸没透镜的宽束曲轴像差理论[J]. 电子学报, 29, 811-813(2001).
CHENG M, TANG T T. Theory of curved axes aberration with wide beam for magnetic immersed lenses[J]. Acta Electronica Sinica, 29, 811-813(2001).
[21] CHENG M, TANG T T, YAO ZH H et al. Optimization design of immersion magnetic lenses used for projection electron beam lithography[J]. Chinese Journal of Vacuum Science and Technology, 21, 315-318(2001).
程敏, 唐天同, 姚振华. 用于投射式电子束曝光系统的磁浸没透镜的优化设计[J]. 真空科学与技术, 21, 315-318(2001).
[22] 陈喜亚, 孙伟强, 孟庆浪. 浸没式磁透镜电子枪及其光轴对中的方法[P].
CHEN X Y, SUN W Q, MENG Q G et al. Method for aligning the optical axis of immersion magnetic lens electron gun[P].
[23] BRONSGEEST M S, BARTH J E, SWANSON L W et al. Probe current, probe size, and the practical brightness for probe forming systems[J]. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 26, 949-955(2008).
[24] ORLOFF J.
[25] YAN H, SHEN Y Q. Influences of different work distances and acceleration voltages of SEM on image resolution[J]. Experimental Technology and Management, 28, 44-45, 49(2011).
严红, 沈一骑. SEM工作距离和加速电压对图像分辨率的影响[J]. 实验技术与管理, 28, 44-45, 49(2011).
[26] 黄兰友, 刘绪平[M]. 电子显微镜与电子光学(1991).
HUANG L Y, LIU X P[M]. Electron Microscope and Electron Optics(1991).
[27] TANG T, SONG J. Side pole-gap magnetic electron lenses[J]. Optik, 84, 108-112(1990).
[28] 王丽娟, 刘俊标, 赵伟霞. 高功率密度微焦斑X射线源聚焦系统的设计[J]. 电子显微学报, 38, 112-117(2019).
WANG L J, LIU J B, ZHAO W X et al. Design of a high power density micro-focus spot X-ray source focusing system[J]. Journal of Chinese Electron Microscopy Society, 38, 112-117(2019).
[29] TUGGLE D W, SWANSON L W. Emission characteristics of the Zro/W thermal field electron source[J]. Journal of Vacuum Science & Technology B, 3, 220-223(1985).
Get Citation
Copy Citation Text
Weixia ZHAO, Lixin ZHANG, Junbiao LIU, Bohua YIN, Li HAN. Thermal field electron gun immersed in magnetic lens field[J]. Optics and Precision Engineering, 2025, 33(11): 1700
Category:
Received: Feb. 27, 2025
Accepted: --
Published Online: Aug. 14, 2025
The Author Email: Lixin ZHANG (zhanglx@mail.iee.ac.cn), Junbiao LIU (liujb@mail.iee.ac.cn)