Acta Optica Sinica, Volume. 45, Issue 2, 0215001(2025)
In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning
[1] Du B X, Li Z L, Yang Z R et al. Application and research progress of HVDC XLPE cables[J]. High Voltage Engineering, 43, 344-354(2017).
[2] Lin B. The engineering application of EHV XLPE cable insulation testing technology[D](2011).
[3] Liu Y G. New development of high voltage cable application in Guangzhou urban network[C], 249-258(2002).
[4] Chen Y. Fault characteristics and mechanism of high voltage XLPE cable buffer layer[D](2019).
[5] Li C Y, Li H Z, Chen J et al. Analysis of high voltage XLPE power cable buffer layer discharge problem[J]. Electric Power Engineering Technology, 37, 61-66(2018).
[6] Liu Y, Chen J, Hu L B et al. Mechanism and experimental study on discharge ablation of high voltage XLPE cable buffer layer[J]. Insulating Materials, 54, 102-108(2021).
[7] Dong Y F. Partial discharge detection using ultra high frequency in 110 kV XLPE cable accessories and signal propagation properties[D](2014).
[8] Liu F L, Xia R, Li W J et al. Research on detection method of buffer layer ablation defect in high voltage XLPE cable[J]. High Voltage Apparatus, 58, 259-266, 274(2022).
[9] Guo Y. Application of DR technology in inspection and testing of special equipment[J]. Plant Maintenance Engineering, 97-98(2020).
[10] Zhang C C, Pan L, Meng M et al. Application of industrial CT technology in nondestructive testing of C/C composites[J]. Hi-Tech Fiber and Application, 46, 44-47(2021).
[11] Liu J. Defect detection research of industrial CT images[J]. Machinery Design & Manufacture, 118-121(2020).
[12] Liao M J, Li L, Duan X J et al. Local source-translation CT imaging for testing in-service high-voltage cables[J]. Acta Optica Sinica, 42, 1611002(2022).
[13] Zhao Y S, Li H W, Zhang P. Development of limited-angle CT imaging[J]. Chinese Journal of Stereology and Image Analysis, 27, 436-446(2022).
[14] Peng M Z. On the comparison and application of convolutional neural network target detection method[J]. Journal of Pu’er University, 38, 44-46(2022).
[17] Wang H, Zha T, Nie L M et al. Improved faster R-CNN-based contact lens surface defect detection[J]. Laser & Optoelectronics Progress, 60, 2015004(2023).
[18] Chang H T. Research on image defect detection of industrial CT based on Faster R-CNN[D](2018).
[20] Gao W Y, Sun Y G. Application of filter back projection algorithm in CT detection[C], 1157-1160(2007).
[21] Li Z P, Cong P, Wu H F. Research of ART method in CT image reconstruction[J]. Nuclear Electronics & Detection Technology, 25, 184-186(2005).
[22] Shen E X, Wang Y X, Yuan J. Using improved SART algorithm eliminate truncated projection artifacts in limited-angle CT[J]. Journal of Nanjing University (Natural Science), 58, 1005-1011(2022).
[23] Huang L Y, Zhu S P, Kuang T[M]. Simulation experiment of medical image reconstruction(2015).
[33] Deng C F, Wang M M, Liu L et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 24, 1968-1979(1979).
[36] Chen Y, Ni S, Ma T Y et al. Detection of buffer layer defects of in-service high-voltage cables[J]. Chinese Journal of Scientific Instrument, 44, 82-90(2023).
[37] Wei Y, Li C Y. The research of streak artifact correcting method in CT reconstruction[J]. Optical Technique, 33, 141-143(2007).
[39] Li Q L, Yan Y, Sun H S et al. Review of metal artifacts correction methods on X-ray computed tomography[J]. Computerized Tomography Theory and Applications, 20, 131-140(2011).
[43] Chen H. Research on depth knowledge transfer algorithm of target detection under a small amount of data calibration[D](2018).
Get Citation
Copy Citation Text
Chaoliang He, Ting Yan, Tianyu Ma, Xiaojiao Duan. In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning[J]. Acta Optica Sinica, 2025, 45(2): 0215001
Category: Machine Vision
Received: Sep. 24, 2024
Accepted: Oct. 23, 2024
Published Online: Jan. 23, 2025
The Author Email: Duan Xiaojiao (duan721@163.com)
CSTR:32393.14.AOS241588