Acta Optica Sinica, Volume. 45, Issue 2, 0215001(2025)

In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning

Chaoliang He1,2, Ting Yan1,2, Tianyu Ma1,2, and Xiaojiao Duan1,2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & System, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Industrial CT Non-Destructive Testing Engineering Research Center, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    References(43)

    [1] Du B X, Li Z L, Yang Z R et al. Application and research progress of HVDC XLPE cables[J]. High Voltage Engineering, 43, 344-354(2017).

    [2] Lin B. The engineering application of EHV XLPE cable insulation testing technology[D](2011).

    [3] Liu Y G. New development of high voltage cable application in Guangzhou urban network[C], 249-258(2002).

    [4] Chen Y. Fault characteristics and mechanism of high voltage XLPE cable buffer layer[D](2019).

    [5] Li C Y, Li H Z, Chen J et al. Analysis of high voltage XLPE power cable buffer layer discharge problem[J]. Electric Power Engineering Technology, 37, 61-66(2018).

    [6] Liu Y, Chen J, Hu L B et al. Mechanism and experimental study on discharge ablation of high voltage XLPE cable buffer layer[J]. Insulating Materials, 54, 102-108(2021).

    [7] Dong Y F. Partial discharge detection using ultra high frequency in 110 kV XLPE cable accessories and signal propagation properties[D](2014).

    [8] Liu F L, Xia R, Li W J et al. Research on detection method of buffer layer ablation defect in high voltage XLPE cable[J]. High Voltage Apparatus, 58, 259-266, 274(2022).

    [9] Guo Y. Application of DR technology in inspection and testing of special equipment[J]. Plant Maintenance Engineering, 97-98(2020).

    [10] Zhang C C, Pan L, Meng M et al. Application of industrial CT technology in nondestructive testing of C/C composites[J]. Hi-Tech Fiber and Application, 46, 44-47(2021).

    [11] Liu J. Defect detection research of industrial CT images[J]. Machinery Design & Manufacture, 118-121(2020).

    [12] Liao M J, Li L, Duan X J et al. Local source-translation CT imaging for testing in-service high-voltage cables[J]. Acta Optica Sinica, 42, 1611002(2022).

    [13] Zhao Y S, Li H W, Zhang P. Development of limited-angle CT imaging[J]. Chinese Journal of Stereology and Image Analysis, 27, 436-446(2022).

    [14] Peng M Z. On the comparison and application of convolutional neural network target detection method[J]. Journal of Pu’er University, 38, 44-46(2022).

    [17] Wang H, Zha T, Nie L M et al. Improved faster R-CNN-based contact lens surface defect detection[J]. Laser & Optoelectronics Progress, 60, 2015004(2023).

    [18] Chang H T. Research on image defect detection of industrial CT based on Faster R-CNN[D](2018).

    [20] Gao W Y, Sun Y G. Application of filter back projection algorithm in CT detection[C], 1157-1160(2007).

    [21] Li Z P, Cong P, Wu H F. Research of ART method in CT image reconstruction[J]. Nuclear Electronics & Detection Technology, 25, 184-186(2005).

    [22] Shen E X, Wang Y X, Yuan J. Using improved SART algorithm eliminate truncated projection artifacts in limited-angle CT[J]. Journal of Nanjing University (Natural Science), 58, 1005-1011(2022).

    [23] Huang L Y, Zhu S P, Kuang T[M]. Simulation experiment of medical image reconstruction(2015).

    [33] Deng C F, Wang M M, Liu L et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 24, 1968-1979(1979).

    [36] Chen Y, Ni S, Ma T Y et al. Detection of buffer layer defects of in-service high-voltage cables[J]. Chinese Journal of Scientific Instrument, 44, 82-90(2023).

    [37] Wei Y, Li C Y. The research of streak artifact correcting method in CT reconstruction[J]. Optical Technique, 33, 141-143(2007).

    [39] Li Q L, Yan Y, Sun H S et al. Review of metal artifacts correction methods on X-ray computed tomography[J]. Computerized Tomography Theory and Applications, 20, 131-140(2011).

    [43] Chen H. Research on depth knowledge transfer algorithm of target detection under a small amount of data calibration[D](2018).

    Tools

    Get Citation

    Copy Citation Text

    Chaoliang He, Ting Yan, Tianyu Ma, Xiaojiao Duan. In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning[J]. Acta Optica Sinica, 2025, 45(2): 0215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 24, 2024

    Accepted: Oct. 23, 2024

    Published Online: Jan. 23, 2025

    The Author Email: Duan Xiaojiao (duan721@163.com)

    DOI:10.3788/AOS241588

    CSTR:32393.14.AOS241588

    Topics