Acta Optica Sinica, Volume. 45, Issue 2, 0215001(2025)

In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning

Chaoliang He1,2, Ting Yan1,2, Tianyu Ma1,2, and Xiaojiao Duan1,2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & System, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Industrial CT Non-Destructive Testing Engineering Research Center, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(15)
    Three dimensional models. (a) RCT method; (b) L-STCT method
    Reconstruction effects of different algorithms. (a) FBP; (b) SIRT
    Scanning system of L-STCT
    Comparison of image preprocessing results in datasets (from left to right, methods are window width and level adjustment, cropping, and denoising in sequence)
    Architecture of Cascade R-CNN
    Improved CBAM structure diagram
    Overall detection network structure
    L-STCT defect images
    Interference features in L-STCT images. (a) Metal artifact; (b) stripe artifact; (c) missing edge information; (d) precipitated crystal
    Network detection results and their locally enlarged images
    • Table 1. Parameters of STCT

      View table

      Table 1. Parameters of STCT

      ParameterValue
      SOD /mm208.3, 119, 160
      DOD /mm60, 54, 55
      Number of detector arrays /pixel1024×1024
      Distance of source /mm240
      Voltage /kV60, 0, 70
      Current /μA70, 70, 140
      Pixel size /mm0.127
      Number of scanning points1000, 1000, 500
    • Table 2. Training parameter list

      View table

      Table 2. Training parameter list

      ParameterValue
      Epochs200
      Batch_size1
      Early_stop10
      Img_scale[900, 900]
      Cascade Head IoU[0.3, 0.4, 0.5]
      Anchor_scale[16, 32, 64, 128, 256]
      Anchor_ratio[0.5, 1, 2]
      Original learning rate0.001
      Momentum0.9
      Weight _decay0.0001
      Pre_modelResNet50-FPN
      Num_proposals100
    • Table 3. Results of ablation experiments

      View table

      Table 3. Results of ablation experiments

      CascadeCBAMDCNv2EFPNF-EIoUAPallAPsmallAPmediumAR
      0.8210.7880.8430.876
      0.8530.8110.8780.903
      0.8770.8390.8920.917
      0.8780.8510.8850.919
      0.8840.8590.8970.927
    • Table 4. Results of algorithm comparison experiments

      View table

      Table 4. Results of algorithm comparison experiments

      MethodAPARFPS
      Cascade R-CNN0.8210.87613.986
      Libra R-CNN0.8010.85713.521
      DETR0.8200.8839.875
      VIT0.8760.9175.108
      Our model0.8840.9279.351
    • Table 5. Results of knowledge transfer experiments

      View table

      Table 5. Results of knowledge transfer experiments

      MethodDatasetAPAR
      Cascade R-CNNL-STCT0.8210.876
      Cascade R-CNNRCT0.9270.949
      Our modelL-STCT0.8840.927
      Our modelL-STCT+RCT0.8690.912
      Our modelPreRCT+L-STCT0.9010.959
    Tools

    Get Citation

    Copy Citation Text

    Chaoliang He, Ting Yan, Tianyu Ma, Xiaojiao Duan. In-Service High-Voltage Cable Defect Detection Using Computed Tomography Based on Deep Learning[J]. Acta Optica Sinica, 2025, 45(2): 0215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 24, 2024

    Accepted: Oct. 23, 2024

    Published Online: Jan. 23, 2025

    The Author Email: Duan Xiaojiao (duan721@163.com)

    DOI:10.3788/AOS241588

    CSTR:32393.14.AOS241588

    Topics