Chinese Journal of Lasers, Volume. 51, Issue 20, 2002202(2024)

Effect of a Non‐Continuous Composite Path with Zero Overlapping Rate on Cutoff Value of Detail Fatigue Rated Strength of Aerospace Titanium Alloy TC4 Under Laser Shock Peening

Chengrun Ye1, Jianyu Sun1,2, Yingbin Long1、*, Xujie Zhao3, Zenghuan Zhang3, Zhengrong Yu3, Yujie Peng1, and Yuxin Leng1、****
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science,Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Commercial Aircraft Corporation of China Ltd. (COMAC), Shanghai 200126, China
  • show less
    Figures & Tables(17)
    Size of TC4 alloy sample
    LSP device diagram
    LSP path and LSPed sample surface. (a) LSP path; (b) actual surface of TC4 sample after LSP
    TEM photographs of TC4 alloy before and after LSP. (a)(b) TC4 specimen before LSP; (c)(d) LSP12 specimen
    LSP loading curve
    Surface residual stress distributions after LSP on single side for TC4 titanium alloy. (a) Top view of stress distribution of the overall specimen; (b) partially enlarged view of arc inner wall
    Residual stress distribution curves of TC4 alloy peened by single-sided laser shock. (a) Residual stress curve in the X-direction; (b) residual stress curve along thickness direction
    Comparison of residual stresses in TC4 specimens after LSP with different parameters. (a) Overlapping rate 0; (b) overlapping rate 25%; (c) overlapping rate 50%; (d) location of residual stress testing points
    Fatigue performance of TC4 specimens before and after LSP. (a) DFRcutoff values ; (b) S-N fatigue life curves
    • Table 1. Chemical composition of TC4 titanium alloy

      View table

      Table 1. Chemical composition of TC4 titanium alloy

      ElementMass fraction /%
      H0.002
      N0.003
      C0.03
      O0.11
      Fe0.12
      V4
      Al6.1
      TiBal.
    • Table 2. Mechanical properties of TC4 titanium alloy[4,40,43]

      View table

      Table 2. Mechanical properties of TC4 titanium alloy[4,40,43]

      Mechanical propertyValue
      Density ρ /(kg/m34500
      Elastic modulus E /GPa110
      Elongation δ /%13
      Poisson ratio ν0.34
      Tensile strength σb /MPa975
      Yield strength σ0.2 /MPa890
    • Table 3. Laser shock peening (LSP) parameters

      View table

      Table 3. Laser shock peening (LSP) parameters

      LSP parameterValue
      Pulse energy /J10
      Central wavelength /nm1064
      Pulse width /ns9.5
      Repetition frequency /Hz1
      Pulse number /shock1
      Spot diameter /mm2.5
      Energy distributionFlat-top
      Laser power density /(GW/cm26, 8, 10, 12
    • Table 4. Surface roughness of TC4 under different LSP conditions

      View table

      Table 4. Surface roughness of TC4 under different LSP conditions

      Specimen No.Overlapping rate /%Average Ra /μm
      LSP804.174
      LSP8252.709
      LSP8504.588
      LSP1003.812
      LSP10254.939
      LSP10504.219
      LSP1204.291
      LSP12254.186
      LSP12503.797
    • Table 5. Surface roughness comparison between LSP10 treatment area and untreated area

      View table

      Table 5. Surface roughness comparison between LSP10 treatment area and untreated area

      Specimen No.Overlapping rate /%Average Ra /μm
      LSP areaUntreated area
      LSP1003.8124.625
      LSP10254.9393.896
      LSP10504.2193.835
    • Table 6. Main parameters of TC4 titanium alloy in J‒C model[38]

      View table

      Table 6. Main parameters of TC4 titanium alloy in J‒C model[38]

      ParameterValue
      ρ /(kg·cm-34500
      ε˙01
      m1.1
      A /MPa1098
      B /MPa1092
      n0.93
      C1.1
    • Table 7. Fatigue life test results of TC4 samples

      View table

      Table 7. Fatigue life test results of TC4 samples

      Specimen No.Maximum stress /MPaFatigue life /cycleSpecimen No.Maximum stress /MPaFatigue life /cycle
      Untreated-1420169912LSP10-1480165656
      Untreated-2420284761LSP10-2480215752
      Untreated-3420176616LSP10-3480193742
      Untreated-4420198024LSP10-4480251232
      Untreated-5420257204LSP10-5480224612
      Untreated-6420225718LSP10-6480193624
      Untreated-7420294875LSP10-7480178533
      Untreated-8420176584LSP10-8480201648
      LSP8-1470223615LSP12-1500180315
      LSP8-2470193784LSP12-2500162697
      LSP8-3470176193LSP12-3500223375
      LSP8-4470236419LSP12-4500171641
      LSP8-5470195049LSP12-5500255214
      LSP8-6470156193LSP12-6500175556
      LSP8-7470165483LSP12-7500265974
      LSP8-8470184623LSP12-8500364632
    • Table 8. Confidence coefficient SC forconfidence of 95%[44]

      View table

      Table 8. Confidence coefficient SC forconfidence of 95%[44]

      nSC (for titanium alloy)
      21.34
      31.276
      41.245
      51.218
      61.205
      71.19
      81.165
      91.16
    Tools

    Get Citation

    Copy Citation Text

    Chengrun Ye, Jianyu Sun, Yingbin Long, Xujie Zhao, Zenghuan Zhang, Zhengrong Yu, Yujie Peng, Yuxin Leng. Effect of a Non‐Continuous Composite Path with Zero Overlapping Rate on Cutoff Value of Detail Fatigue Rated Strength of Aerospace Titanium Alloy TC4 Under Laser Shock Peening[J]. Chinese Journal of Lasers, 2024, 51(20): 2002202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Nov. 23, 2023

    Accepted: Jan. 17, 2024

    Published Online: Oct. 13, 2024

    The Author Email: Long Yingbin (lengyuxin@mail.siom.ac.cn), Leng Yuxin (lengyuxin@mail.siom.ac.cn)

    DOI:10.3788/CJL231427

    CSTR:32183.14.CJL231427

    Topics