Laser & Optoelectronics Progress, Volume. 62, Issue 17, 1722001(2025)

Integrated Opto-Mechanical-Thermal Analysis and Thermal Control Design for Water Depth Measurement LiDAR

Guoqing Zhou1,2、*, Angte Cai1,2, Kaiyun Bao1,2, Zhongao Wang1,2, Yi Tang2,3, Xiang Zhou1,2,4, Tongzhi Lin2, Ertao Gao2, and Yuhang Bai2
Author Affiliations
  • 1College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, Guangxi , China
  • 2Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541006, Guangxi , China
  • 3College of Earth Sciences, Guilin University of Technology, Guilin 541006, Guangxi , China
  • 4School of Microelectronics, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(25)
    Process diagram for integrated opto-mechanical-thermal analysis
    Structure diagram of LiDAR
    3 types of radiator structures. (a) Plate fin radiator structure; (b) array pin fin radiator structure; (c) staggered pin fin radiator structure
    Thermal effect analysis results. (a) Overall diagram of thermal effect; (b) sectional view of thermal effect
    High-speed data acquisition module
    Thermal effect analysis result for high-speed data acquisition module. (a) Overall diagram of thermal effect; (b) sectional view of thermal effect
    LiDAR optical receiving system
    Finite element mesh model of the whole system
    Cloud diagrams of thermal simulation for the whole system. (a) Overall diagram of thermal simulation; (b) sectional view of thermal simulation
    Cloud diagrams of thermal simulation for the whole system with airflow. (a) Overall diagram of thermal simulation; (b) sectional view of thermal simulation
    Cloud diagram of finite element analysis for main lens
    MTF curves after adding surface shape change. (a) MTF curve at 10 ℃; (b) MTF curve at 20 ℃; (c) MTF curve at 30 ℃; (d) MTF curve at 40 ℃
    Optimized air duct structure
    MTF curves after optimized air duct. (a) MTF curve at 10 ℃; (b) MTF curve at 20 ℃; (c) MTF curve at 30 ℃; (d) MTF curve at 40 ℃
    Wujiutan experiment
    Drone-based LiDAR water depth measurement experiment. (a) LiDAR depth measurement; (b) multibeam depth measurement
    • Table 1. Requirements for heat consumption and working environment temperature of various components of LiDAR

      View table

      Table 1. Requirements for heat consumption and working environment temperature of various components of LiDAR

      Module nameStorage temperature /℃Ambient temperature /℃Maximum thermal power consumption /W
      Motor module-5‒30-25‒4034.5
      ADC module-55‒70-20‒4070
      Laser module0‒5015‒40100
      PMT-20‒505‒459
      Controller-20‒700‒601
    • Table 2. Common material parameters for heat sink

      View table

      Table 2. Common material parameters for heat sink

      MaterialThermal conductivity /(W·m-1·K-1Density /(g·cm-3Thermal expansion coefficient /(10-6 K)
      Aluminum alloy1602.7023.6
      Copper4018.9017.8
      Copper alloy2009.807.3
      Magnesium alloy1501.7426.1
    • Table 3. Thermal effect analysis of three structures

      View table

      Table 3. Thermal effect analysis of three structures

      Heat sink structureMaximum temperature /℃Minimum temperature /℃
      Structure 144.7028.23
      Structure 246.0629.29
      Structure 345.4928.66
    • Table 4. High-speed acquisition module temperature

      View table

      Table 4. High-speed acquisition module temperature

      Work phaseMaximum temperature /℃
      High altitude collection56.15
      Ground data processing64.33
    • Table 5. Common material parameters

      View table

      Table 5. Common material parameters

      MaterialDensity /(g·cm-3Elastic modulus /GPaPoisson’s ratioThermal expansion coefficient /(10-6 K)
      Microcrystalline glass2.52980.240.5
      SiC3.113500.182.5
      Titanium alloy4.501100.338.5
      Magnesium aluminum alloy1.74450.3525.0
      Carbon fiber1.532300.250.8
    • Table 6. Heat consumption of various components of LiDAR

      View table

      Table 6. Heat consumption of various components of LiDAR

      Module nameModule heat consumption /W
      Motor module34.5
      AD module70
      Laser module100
      PMT9
    • Table 7. Thermal effects analysis table

      View table

      Table 7. Thermal effects analysis table

      No.Ambient temperature /℃Maximum temperature /℃
      Ground data downloadHigh altitude collection
      11034.2726.82
      22044.0236.74
      33053.7846.66
      44063.5256.58
    • Table 8. Temperature data of high-speed acquisition module for Wujiutan test

      View table

      Table 8. Temperature data of high-speed acquisition module for Wujiutan test

      Work phaseMaximum temperature /℃
      High altitude collection44.7
      Ground data processing52.1
    • Table 9. Experimental data of water depth measurement

      View table

      Table 9. Experimental data of water depth measurement

      No.LiDAR depth measurement /mMultibeam depth measurement /mError /m
      11.030.980.05
      21.391.330.06
      31.471.550.08
      41.801.890.09
      52.031.940.09
    Tools

    Get Citation

    Copy Citation Text

    Guoqing Zhou, Angte Cai, Kaiyun Bao, Zhongao Wang, Yi Tang, Xiang Zhou, Tongzhi Lin, Ertao Gao, Yuhang Bai. Integrated Opto-Mechanical-Thermal Analysis and Thermal Control Design for Water Depth Measurement LiDAR[J]. Laser & Optoelectronics Progress, 2025, 62(17): 1722001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jan. 9, 2025

    Accepted: Feb. 18, 2025

    Published Online: Aug. 11, 2025

    The Author Email: Guoqing Zhou (gzhou@glut.edu.cn)

    DOI:10.3788/LOP250478

    CSTR:32186.14.LOP250478

    Topics