Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2215008(2021)

Video Summarization Algorithm Based on Improved Fully Convolutional Network

Hao Wang and Li Peng*
Author Affiliations
  • School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    References(23)

    [1] Potapov D, Douze M, Harchaoui Z et al. Category-specific video summarization[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8694, 540-555(2014).

    [3] Pritch Y, Rav-Acha A, Peleg S. Nonchronological video synopsis and indexing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1971-1984(2008).

    [4] Pritch Y, Rav-Acha A, Gutman A et al. Webcam synopsis: peeking around the world[C]. //2007 IEEE 11th International Conference on Computer Vision, October 14-21, 2007, Rio de Janeiro, Brazil, 9848979(2007).

    [5] Zhang K, Chao W L, Sha F et al. Video summarization with long short-term memory[M]. //Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9911, 766-782(2016).

    [6] Li Z T, Yang L. Weakly supervised deep reinforcement learning for video summarization with semantically meaningful reward[C]. //2021 IEEE Winter Conference on Applications of Computer Vision (WACV), January 3-8, 2021, Waikoloa, HI, USA., 3238-3246(2021).

    [7] Lea C, Flynn M D, Vidal R et al. Temporal convolutional networks for action segmentation and detection[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 1003-1012(2017).

    [8] Lin R C, Xiao J, Fan J P. NeXtVLAD: an efficient neural network to aggregate frame-level features for large-scale video classification[M]. // Leal-Taixé L, Roth S. Computer vision-ECCV 2018 Workshops. Lecture notes in computer science, 11132, 206-218(2019).

    [9] Rochan M, Ye L W, Wang Y. Video summarization using fully convolutional sequence networks[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11216, 358-374(2018).

    [10] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2015).

    [11] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[C]. //4th International Conference on Learning Representations, ICLR 2016, May 2-4, 2016, San Juan, Puerto Rico. [S.l.: s.n.](2016).

    [12] Chen L C, Papandreou G, Kokkinos I et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [15] Zhang X F, Liu J, Shi Z S et al. Review of deep learning-based semantic segmentation[J]. Laser & Optoelectronics Progress, 56, 150003(2019).

    [16] Dong Y F, Yang Y X, Wang L Q. Image semantic segmentation based on multi-scale feature extraction and fully connected conditional random fields[J]. Laser & Optoelectronics Progress, 56, 131007(2019).

    [17] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 15523970(2015).

    [18] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 2650-2658(2015).

    [19] Gygli M, Grabner H, Riemenschneider H et al. Creating summaries from user videos[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8695, 505-520(2014).

    [20] Song Y L, Vallmitjana J, Stent A et al. TVSum: Summarizing web videos using titles[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA, 5179-5187(2015).

    [21] Mahasseni B, Lam M, Todorovic S. Unsupervised video summarization with adversarial LSTM networks[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 2982-2991(2017).

    [22] Yuan L, Tay F E, Li P et al. Cycle-SUM:cycle-consistent adversarial LSTM networks for unsupervised video summarization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 9143-9150(2019).

    [23] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. //2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy., 2242-2251(2017).

    Tools

    Get Citation

    Copy Citation Text

    Hao Wang, Li Peng. Video Summarization Algorithm Based on Improved Fully Convolutional Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2215008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 15, 2021

    Accepted: Jul. 15, 2021

    Published Online: Nov. 10, 2021

    The Author Email: Li Peng (penglimail2002@163.com)

    DOI:10.3788/LOP202158.2215008

    Topics