Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2215008(2021)

Video Summarization Algorithm Based on Improved Fully Convolutional Network

Hao Wang and Li Peng*
Author Affiliations
  • School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    Figures & Tables(9)
    Spatial convolution and temporal convolution. (a) Spatial convolution; (b) temporal convolution
    Schematic diagram of ATPP
    Network structure of ATPP-SUM
    Comparison of video summarization results by different methods. (a) Manual labeling; (b) SUM-FCN; (c) ATPP-SUM; (d) ATPP-SUM+DenseCRF
    • Table 1. Performance comparison of different models on SumMe dataset

      View table

      Table 1. Performance comparison of different models on SumMe dataset

      ModelF /%
      vsLSTM37.6
      ddpLSTM38.6
      SUM-FCN47.5
      SUM-GAN41.7
      Cycle-SUM41.9
      ATPP-SUM48.6
      ATPP-SUMunsup43.2
    • Table 2. Performance comparison of different models on TVSum dataset

      View table

      Table 2. Performance comparison of different models on TVSum dataset

      ModelF /%
      vsLSTM54.2
      ddpLSTM54.7
      SUM-FCN56.8
      SUM-GAN56.3
      Cycle-SUM57.6
      ATPP-SUM58.5
      ATPP-SUMunsup55.5
    • Table 3. Ablation experiment

      View table

      Table 3. Ablation experiment

      ModuleF on SumMe /%F on TVSum /%
      Dilation-SUM46.155.2
      Dilation-SUM+DenseCRF46.856.4
      ATPP-SUM48.658.5
      ATPP-SUM+DenseCRF49.159.8
    • Table 4. Influence of parameters in DenseCRF on model performance unit: %

      View table

      Table 4. Influence of parameters in DenseCRF on model performance unit: %

      Parameterσβ=5σβ=15σβ=25
      σα=1056.857.458.9
      σα=1557.758.359.4
      σα=2057.359.859.1
    • Table 5. Influence of expansion rates in ATPP on model performance

      View table

      Table 5. Influence of expansion rates in ATPP on model performance

      ModelF on SumMe /%F on TVSum /%
      ATPP-SUM(1,2,4,8)47.557.6
      ATPP-SUM(1,6,12,18)49.159.8
      ATPP-SUM(1,12,24,36)48.659.5
    Tools

    Get Citation

    Copy Citation Text

    Hao Wang, Li Peng. Video Summarization Algorithm Based on Improved Fully Convolutional Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2215008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 15, 2021

    Accepted: Jul. 15, 2021

    Published Online: Nov. 10, 2021

    The Author Email: Li Peng (penglimail2002@163.com)

    DOI:10.3788/LOP202158.2215008

    Topics