Chinese Journal of Lasers, Volume. 48, Issue 2, 0202019(2021)

Research Advancement on Ultrafast Laser Microprocessing of Transparent Dielectrics

Jiaqun Li1, Jianfeng Yan1、*, Xin Li2, and Liangti Qu1,3
Author Affiliations
  • 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
  • 3Department of Chemistry, Tsinghua University, Beijing 100084, China
  • show less
    References(84)

    [4] McMillen B, Zhang B T, Chen K P et al. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss[J]. Optics Letters, 37, 1418-1420(2012).

    [6] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [7] Kerse C. KalaycIo ɡ̬lu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).

    [11] Yu J C, Jiang L, Yan J F et al. Microprocessing on single protein crystals using femtosecond pulse laser[J]. ACS Biomaterials Science & Engineering, 6, 6445-6452(2020).

    [13] Qiao M, Yan J F, Qu L T et al. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance[J]. ACS Applied Materials & Interfaces, 12, 41250-41258(2020).

    [14] Bloembergen N. A brief history of light breakdown[J]. Journal of Nonlinear Optical Physics & Materials, 6, 377-385(1997).

    [15] Stuart B C, Feit M D, Rubenchik A M et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 74, 2248-2251(1995).

    [16] Apostolopoulos V, Laversenne L, Colomb T et al. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti 3+: sapphire[J]. Applied Physics Letters, 85, 1122-1124(2004).

    [18] Juodkazis S, Vailionis A, Gamaly E G et al. Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases[J]. MRS Advances, 1, 1149-1155(2016).

    [19] Miura K, Qiu J R, Inouye H et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 71, 3329-3331(1997).

    [20] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).

    [21] Juodkazis S, Nishimura K, Tanaka S et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).

    [22] Homoelle D, Wielandy S, Gaeta A L et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Optics Letters, 24, 1311-1313(1999).

    [23] Schaffer C B, Brodeur A, García J F et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 26, 93-95(2001).

    [24] Chan J W, Huser T R, Risbud S H et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 82, 2371-2373(2003).

    [25] Bhardwaj V R, Simova E, Corkum P B et al. Femtosecond laser-induced refractive index modification in multicomponent glasses[J]. Journal of Applied Physics, 97, 083102(2005).

    [26] Bhuyan M K, Velpula P K, Colombier J P et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 104, 021107(2014).

    [27] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 26, 42-43(2001).

    [28] Fertein E, Przygodzki C, Delbarre H et al. Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm[J]. Applied Optics, 40, 3506-3508(2001).

    [29] Yamada K, Watanabe W, Toma T et al. In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J]. Optics Letters, 26, 19-21(2001).

    [30] Sudrie L, Franco M, Prade B et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 171, 279-284(1999).

    [31] Kazansky P G, Inouye H, Mitsuyu T et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 82, 2199-2202(1999).

    [32] Qiu J R, Kazanski P G, Si J H et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass[J]. Applied Physics Letters, 77, 1940-1942(2000).

    [34] Gamaly E G, Juodkazis S, Nishimura K et al. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation[J]. Physical Review B, 73, 214101(2006).

    [35] Juodkazis S, Misawa H, Hashimoto T et al. Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids[J]. Applied Physics Letters, 88, 201909(2006).

    [37] Chan J W, Huser T, Risbud S et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Optics Letters, 26, 1726-1728(2001).

    [38] Hirao K, Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser[J]. Journal of Non-Crystalline Solids, 239, 91-95(1998).

    [39] Misawa H. 3D laser microfabrication: principles and applications[M]. Hoboken :John Wiley & Sons, Inc.(1999).

    [40] Richter S, Heinrich M, Döring S et al. Nanogratings in fused silica: formation, control, and applications[J]. Journal of Laser Applications, 24, 042008(2012).

    [41] Schaffer C B, García J F, Mazur E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 76, 351-354(2003).

    [42] Eaton S, Zhang H B, Herman P et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 13, 4708-4716(2005).

    [44] Efimov O M, Gabel K, Garnov S V et al. Color-center generation in silicate glasses exposed to infrared femtosecond pulses[J]. Journal of the Optical Society of America B, 15, 193-199(1998).

    [45] Streltsov A M, Borrelli N F. Study of femtosecond-laser-written waveguides in glasses[J]. Journal of the Optical Society of America B, 19, 2496-2504(2002).

    [46] Dekker P, Ams M, Marshall G D et al. Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres[J]. Optics Express, 18, 3274-3283(2010).

    [47] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 88, 111119(2006).

    [50] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Reviews, 2, 26-46(2008).

    [51] Hallo L, Mézel C, Bourgeade A et al. Laser-matter interaction in transparent materials: confined micro-explosion and jet formation[M]. // Hall T J, Gaponenko S V, Paredes S A. Extreme photonics & applications. NATO science for peace and security series B: physics and biophysics. Dordrecht: Springer, 121-146(2010).

    [52] Morris J M. MacKenzie M D, Petersen C R, et al. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics[J]. Optical Materials Express, 8, 1001(2018).

    [53] Voigtländer C, Richter D, Thomas J et al. Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses[J]. Applied Physics A, 102, 35-38(2011).

    [54] Qiao M, Wang H M, Lu H J et al. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser[J]. Science China Materials, 63, 1300-1309(2020).

    [55] Yao Z L, Jiang L, Li X W et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 26, 21960-21968(2018).

    [56] Sakakura M, Sawano T, Shimotsuma Y et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 18, 12136-12143(2010).

    [58] Bérubé J P, Lapointe J, Dupont A et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 44, 37-40(2019).

    [59] Paipulas D, Kudriašov V, Malinauskas M et al. Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses[J]. Applied Physics A, 104, 769-773(2011).

    [60] Zhao M J, Hu J, Jiang L et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control[J]. Scientific Reports, 5, 13202(2015).

    [61] Beresna M. Gecevi c̬ius M, Kazansky P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 1, 783-795(2011).

    [62] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).

    [63] Götte N, Winkler T, Meinl T et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics[J]. Optica, 3, 389(2016).

    [64] Roth G L, Rung S, Esen C et al. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping[J]. Optics Express, 28, 5801-5811(2020).

    [65] Ródenas A, Gu M, Corrielli G et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 13, 105-109(2019).

    [66] Li Y, Itoh K, Watanabe W et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).

    [67] Maselli V, Osellame R, Cerullo G et al. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching[J]. Applied Physics Letters, 88, 191107(2006).

    [68] Zhao X, Shin Y C. Femtosecond laser drilling of high-aspect ratio microchannels in glass[J]. Applied Physics A, 104, 713-719(2011).

    [69] Jiang L, Liu P, Yan X et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains[J]. Optics Letters, 37, 2781-2783(2012).

    [70] Wang Z, Jiang L, Li X W et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Optics Letters, 43, 98-101(2018).

    [71] Xia B, Jiang L, Li X et al. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling[J]. Optics Express, 23, 27853-27864(2015).

    [72] Xie Q, Li X W, Jiang L et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam[J]. Applied Physics A, 122, 1-8(2016).

    [73] Ito Y, Yoshizaki R, Miyamoto N et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters, 113, 061101(2018).

    [74] Karimelahi S, Abolghasemi L, Herman P R. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser[J]. Applied Physics A, 114, 91-111(2014).

    [75] Yoshiki K. High-aspect ratio laser drilling of glass assisted by supercritical carbon dioxide[J]. Proceedings of SPIE, 1009, 100921K(2017).

    [77] Sun Q, Saliminia A, Théberge F et al. Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelengths[J]. Journal of Micromechanics & Microengineering, 18, 035039(2008).

    [78] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004).

    [79] Kiyama S, Matsuo S, Hashimoto S et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates[J]. Journal of Physical Chemistry C, 113, 11560-11566(2015).

    [80] Zhang J. C̬erkauskaité A, Drevinskas R, et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 9736, 97360U(2016).

    [81] Huang X, Guo Q, Yang D et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 14, 1-7(2020).

    [82] Castro T D, Fares H, Khalil A A et al. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses[J]. Journal of Non-Crystalline Solids, 517, 51-56(2019).

    [83] Miyamoto I, Cvecek K, Okamoto Y et al. Internal modification of glass by ultrashort laser pulse and its application to microwelding[J]. Applied Physics A, 114, 187-208(2014).

    [84] Penilla E H. Devia-Cruz L F, Wieg A T, et al. Ultrafast laser welding of ceramics[J]. Science, 803-808(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqun Li, Jianfeng Yan, Xin Li, Liangti Qu. Research Advancement on Ultrafast Laser Microprocessing of Transparent Dielectrics[J]. Chinese Journal of Lasers, 2021, 48(2): 0202019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 24, 2020

    Accepted: Oct. 14, 2020

    Published Online: Jan. 7, 2021

    The Author Email: Yan Jianfeng (yanjianfeng@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.0202019

    Topics