Laser & Optoelectronics Progress, Volume. 61, Issue 5, 0523002(2024)

AlGaN-Based Deep-UV LED with Novel Transparent Electrodes and Integrated Array Device for Efficient Disinfection

Zefeng Lin1, Lucheng Yu1, Qicheng Zhou1, Yehang Cai1, Fawen Su3, Shengrong Huang3, Feiya Xu1, Xiaohong Chen1, Ling Li2, and Duanjun Cai1、*
Author Affiliations
  • 1Fujian Key Laboratory of Semiconductor Materials and Applications, College of Physical Science and Technology, Xiamen University, Xiamen 361005, Fujian , China
  • 2State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian , China
  • 3Xiamen Yaoguang Semiconductor Technology Co. Ltd., Xiamen 361006, Fujian , China
  • show less
    References(32)

    [1] Arya R, Kumari S, Pandey B et al. Structural insights into SARS-CoV-2 proteins[J]. Journal of Molecular Biology, 433, 166725(2021).

    [2] Desai A N, Patel P. Stopping the spread of COVID-19[J]. JAMA, 323, 1516(2020).

    [3] Mariano G, Farthing R J, Lale-Farjat S L M et al. Structural characterization of SARS-CoV-2: where we are, and where we need to be[J]. Frontiers in Molecular Biosciences, 7, 605236(2020).

    [4] Buonanno M, Welch D, Shuryak I et al. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses[J]. Scientific Reports, 10, 10285(2020).

    [5] Rattanakul S, Oguma K. Inactivation kinetics and efficiencies of UV-LEDs against pseudomonas aeruginosa, legionella pneumophila, and surrogate microorganisms[J]. Water Research, 130, 31-37(2018).

    [6] Chen J, Loeb S, Kim J H. LED revolution: fundamentals and prospects for UV disinfection applications[J]. Environmental Science: Water Research & Technology, 3, 188-202(2017).

    [7] Welch D, Buonanno M, Grilj V et al. Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases[J]. Scientific Reports, 8, 2752(2018).

    [8] Wu M J, Wang Y J, Wu S C et al. Graphene-insulator-semiconductor ultraviolet light-responsive nitride LEDs for multi-applications[J]. ACS Applied Electronic Materials, 2, 2104-2112(2020).

    [9] Zhao Z B, Cheng C, Jin Y H et al. Sterilization effect of all-solid-state 228 nm far ultraviolet pulsed laser[J]. Chinese Journal of Lasers, 49, 1515001(2022).

    [10] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).

    [11] Mondal R K, Adhikari S, Chatterjee V et al. Recent advances and challenges in AlGaN-based ultra-violet light emitting diode technologies[J]. Materials Research Bulletin, 140, 111258(2021).

    [12] Nagasawa Y, Hirano A. A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire[J]. Applied Sciences, 8, 1264(2018).

    [13] Usman M, Malik S, Munsif M. AlGaN-based ultraviolet light-emitting diodes: challenges and opportunities[J]. Luminescence, 36, 294-305(2021).

    [14] Zhao Z G, Xuan H W, Wang J C et al. Review on the research progress of vacuum ultraviolet solid-state lasers in 193 nm band[J]. Acta Optica Sinica, 42, 1134010(2022).

    [15] Zhang A X, Ren B Y, Wang F et al. Performance enhancement of AlGaN-based deep ultraviolet laser diodes with step superlattice electron blocking layer and wedge-shaped hole blocking layer[J]. Laser & Optoelectronics Progress, 60, 1525001(2023).

    [16] Lee J W, Kim D Y, Park J H et al. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: preferential outcoupling of strong in-plane emission[J]. Scientific Reports, 6, 22537(2016).

    [17] Maeda N, Hirayama H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer[J]. Physica Status Solidi C, 10, 1521-1524(2013).

    [18] Song J O, Ha J S, Seong T Y. Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact[J]. IEEE Transactions on Electron Devices, 57, 42-59(2010).

    [19] Ellmer K. Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties[J]. Journal of Physics D: Applied Physics, 33, R17-R32(2000).

    [20] Bae S K, Kim H, Lee Y et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 5, 574-578(2010).

    [21] Formica N, Sundar Ghosh D, Chen T L et al. Highly stable Ag-Ni based transparent electrodes on PET substrates for flexible organic solar cells[J]. Solar Energy Materials and Solar Cells, 107, 63-68(2012).

    [22] Min J H, Son M, Bae S Y et al. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes[J]. Optics Express, 22, A1040-A1050(2014).

    [23] Wang J, Chen H, Zhao Y et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits[J]. ACS Applied Materials & Interfaces, 12, 35211-35221(2020).

    [24] Liu G Z, Wang J, Ge Y H et al. Cu nanowires passivated with hexagonal boron nitride: an ultrastable, selectively transparent conductor[J]. ACS Nano, 14, 6761-6773(2020).

    [25] Ye S R, Rathmell A R, Chen Z F et al. Metal nanowire networks: the next generation of transparent conductors[J]. Advanced Materials, 26, 6670-6687(2014).

    [26] Cruz M A, Ye S R, Kim M J et al. Multigram synthesis of Cu-Ag core-shell nanowires enables the production of a highly conductive polymer filament for 3D printing electronics[J]. Particle & Particle Systems Characterization, 35, 1700385(2018).

    [27] Eom H, Lee J, Pichitpajongkit A et al. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization[J]. Small, 10, 4171-4181(2014).

    [28] Lee H, Hong S, Lee J et al. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability[J]. ACS Applied Materials & Interfaces, 8, 15449-15458(2016).

    [29] Fujioka A, Misaki T, Murayama T et al. Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells[J]. Applied Physics Express, 3, 041001(2010).

    [30] Pernot C, Kim M, Fukahori S et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes[J]. Applied Physics Express, 3, 061004(2010).

    [31] Takano T, Mino T, Jun S K et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency[J]. Applied Physics Express, 10, 031002(2017).

    [32] Zhang J P, Gao Y, Zhou L et al. Surface hole gas enabled transparent deep ultraviolet light-emitting diode[J]. Semiconductor Science and Technology, 33, 07LT01(2018).

    Tools

    Get Citation

    Copy Citation Text

    Zefeng Lin, Lucheng Yu, Qicheng Zhou, Yehang Cai, Fawen Su, Shengrong Huang, Feiya Xu, Xiaohong Chen, Ling Li, Duanjun Cai. AlGaN-Based Deep-UV LED with Novel Transparent Electrodes and Integrated Array Device for Efficient Disinfection[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0523002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Mar. 20, 2023

    Accepted: Apr. 27, 2023

    Published Online: Mar. 5, 2024

    The Author Email: Duanjun Cai (dcai@xmu.edu.cn)

    DOI:10.3788/LOP230904

    CSTR:32186.14.LOP230904

    Topics