Chinese Journal of Lasers, Volume. 47, Issue 2, 207005(2020)
Coherent Raman Scattering Microscopy Technique and Its Biomedical Applications
[3] Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 137, 801-818(1965).
[4] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).
[5] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).
[6] Cheng J X, Book L D, Xie X S. Polarization coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 26, 1341-1343(2001).
[7] Cheng J X, Volkmer A, Book L D et al. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles[J]. The Journal of Physical Chemistry B, 106, 8493-8498(2002).
[8] Woodbury E J, Ng W K. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 50, 2367(1962).
[9] Ploetz E, Laimgruber S, Berner S et al. Femtosecond stimulated Raman microscopy[J]. Applied Physics B, 87, 389-393(2007).
[10] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).
[11] Saar B G, Freudiger C W, Reichman J et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 330, 1368-1370(2010).
[12] Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy[J]. Nature, 418, 512-514(2002).
[13] Bremer M T, Dantus M. Standoff explosives trace detection and imaging by selective stimulated Raman scattering[J]. Applied Physics Letters, 103, 061119(2013).
[14] Cheng J X, Volkmer A, Book L D et al. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity[J]. The Journal of Physical Chemistry B, 105, 1277-1280(2001).
[17] Rocha-Mendoza I, Langbein W, Borri P. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion[J]. Applied Physics Letters, 93, 201103(2008).
[18] Hellerer T. Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Applied Physics Letters, 85, 25-27(2004).
[19] Langbein W, Rocha-Mendoza I, Borri P. Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment[J]. Journal of Raman Spectroscopy, 40, 800-808(2009).
[20] Chen B C, Sung J, Wu X X et al. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering[J]. Journal of Biomedical Optics, 16, 021112(2011).
[22] Pegoraro A F, Ridsdale A, Moffatt D J et al. Optimally chirped multimodal CARS microscopy based on a single Ti∶sapphire oscillator[J]. Optics Express, 17, 2984-2996(2009).
[23] Vartiainen E M, Rinia H A, Müller M et al. Direct extraction of Raman line-shapes from congested CARS spectra[J]. Optics Express, 14, 3622-3630(2006).
[24] Liu Y X, Lee Y J, Cicerone M T. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform[J]. Optics Letters, 34, 1363-1365(2009).
[25] Garbacik E T, Herek J L, Otto C et al. Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging[J]. Journal of Raman Spectroscopy, 43, 651-655(2012).
[29] Wang K, Zhang D L, Charan K et al. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis[J]. Journal of Biophotonics, 6, 815-820(2013).
[30] Wang P, Li J J, Wang P et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy[J]. Angewandte Chemie International Edition, 52, 13042-13046(2013).
[31] Fu D, Holtom G, Freudiger C et al. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers[J]. The Journal of Physical Chemistry B, 117, 4634-4640(2013).
[32] Fu D, Zhou J, Zhu W S et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering[J]. Nature Chemistry, 6, 614-622(2014).
[34] Lu F K, Ji M B, Fu D et al. Multicolor stimulated Raman scattering microscopy[J]. Molecular Physics, 110, 1927-1932(2012).
[35] Nan X L, Cheng J X, Xie X S. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy[J]. Journal of Lipid Research, 44, 2202-2208(2003).
[36] Mitra R, Chao O, Urasaki Y et al. Detection of lipid-rich prostate circulating tumour cells with coherent anti-Stokes Raman scattering microscopy[J]. BMC Cancer, 12, 540(2012).
[37] Okuno M, Kano H, Fujii K et al. Surfactant uptake dynamics in mammalian cells elucidated with quantitative coherent anti-Stokes Raman scattering microspectroscopy[J]. PLoS One, 9, e93401(2014).
[39] Fu Y, Wang H F, Huff T B et al. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination[J]. Journal of Neuroscience Research, 85, 2870-2881(2007).
[40] Shi Y Z, Kim S, Huff T B et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles[J]. Nature Nanotechnology, 5, 80-87(2010).
[41] Huff T B, Cheng J X. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue[J]. Journal of Microscopy, 225, 175-182(2007).
[42] Jung Y, Ng J H, Keating C P et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model[J]. PLoS One, 9, e94054(2014).
[46] Galli R, Uckermann O, Koch E et al. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain[J]. Journal of Biomedical Optics, 19, 071402(2014).
[47] Hellerer T, Axang C, Brackmann C et al. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Proceedings of the National Academy of Sciences, 104, 14658-14663(2007).
[48] Yen K, Le T T, Bansal A et al. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods[J]. PLoS One, 5, e12810(2010).
[49] Le T T, Duren H M, Slipchenko M N et al. Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans[J]. Journal of Lipid Research, 51, 672-677(2010).
[51] Breunig H G, Weinigel M, Bückle R et al. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber[J]. Laser Physics Letters, 10, 025604(2013).
[53] Ji M, Orringer D A, Freudiger C W et al. 5(201): 201ra119[J]. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine(2013).
[55] Li J J, Condello S, Thomes-Pepin J et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 20, 303-314(2017).
[57] Ji M B, Arbel M, Zhang L L et al. 4(11): eaat7715(2018).
[58] Yan S, Cui S S, Ke K et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 90, 6362-6366(2018).
[59] Zhang L L, Zou X, Zhang B H et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy[J]. Theranostics, 8, 4129-4140(2018).
[60] Zhang B H, Sun M X, Yang Y F et al. Rapid, large-scale stimulated Raman histology with strip mosaicing and dual-phase detection[J]. Biomedical Optics Express, 9, 2604-2613(2018).
[61] Zhang L L, Wu Y Z, Zheng B et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 9, 2541-2554(2019).
[62] Hu C R, Zhang D L, Slipchenko M N et al. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy[J]. Journal of Biomedical Optics, 19, 086005(2014).
[63] Zhang D L, Slipchenko M N, Cheng J X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss[J]. The Journal of Physical Chemistry Letters, 2, 1248-1253(2011).
[64] Wang M C, Min W, Freudiger C W et al. RNAi screening for fat regulatory genes with SRS microscopy[J]. Nature Methods, 8, 135-138(2011).
[65] Wang P, Liu B, Zhang D L et al. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations[J]. Angewandte Chemie International Edition, 53, 11787-11792(2014).
[66] Li X S, Li Y, Jiang M J et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy[J]. Analytical Chemistry, 91, 2279-2287(2019).
[68] Seidel J, Miao Y P, Porterfield W et al. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides[J]. Chemical Communications, 55, 9379-9382(2019).
Get Citation
Copy Citation Text
Li Zilin, Li Shaowei, Zhang Silu, Shen Binglin, Qu Junle, Liu Liwei. Coherent Raman Scattering Microscopy Technique and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2020, 47(2): 207005
Category: biomedical photonics and laser medicine
Received: Aug. 22, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Liwei Liu (llw_cust@163.com)