Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 234(2025)
Research progress on infrared temperature measurement for low emissivity objects
[1] Volkmer R. Thermal characteristics of the solar telescope GREGOR[C], 7012, 220-228(2008).
[2] Hasan S S, Soltau D, Karcher H et al. NLST: the indian national large solar telescope[C], 7733, 215-226(2010).
[3] Hu X C, Peng J Q, Zhang B. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese Journal of Lasers, 42, 45-53(2015).
[4] Du Y Y, An J Z, Shu X J. Effect of thermal distortion of mirror on characteristics of laser beam in unstable resonator[J]. High Power Laser and Particle Beams, 20, 1333-1338(2008).
[5] Liu Z J, Zhou P, Xu X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 36, 773-778(2009).
[6] Jia J C, Zhong Y K, Zhang Z Z et al. Wafer temperature monitoring technology in the integrated circuit manufacturing process[J]. Chinese Journal of Scientific Instrument, 42, 15-29(2021).
[7] Yang S M, Tao W Q[M]. Heat transfer, 367-368(2006).
[8] Mitra C, Banerjee A, Maity S et al. An optical method for measuring metal surface temperature in Harsh environment conditions[C], 7726, 384-391(2010).
[9] Yang Z, Zhang S C, Yang L. Calculation of infrared temperature measurement on non-lambertian objects[J]. Spectroscopy and Spectral Analysis, 30, 2093-2097(2010).
[10] Chen S Q, Chen H S. Influence and analysis of surface material to veracity of measuring temperature by using infrared thermal image instruments[J]. Experimental Technology and Management, 25, 41-43(2008).
[11] Hsieh C K, Ellingson W A. A quantitative determination of surface temperatures using an infrared camera[J]. Metal Science and Heat Treatment, 21, 346-349(1979).
[12] Monte C, Gutschwager B, Morozova S P et al. Radiation thermometry and emissivity measurements under vacuum at the PTB[J]. International Journal of Thermophysics, 30, 203-219(2009).
[13] Alexa P, Solař J, Čmiel F et al. Infrared thermographic measurement of the surface temperature and emissivity of glossy materials[J]. Journal of Building Physics, 41, 533-546(2018).
[14] Raj V C, Prabhu S V. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry[J]. Review of Scientific Instruments, 84, 124903(2013).
[15] Drury M D, Perry K P, Land T. Pyrometers for surface-temperature measurement[J]. Journal of the Iron and Steel Institute, 169, 245-250(1951).
[16] Becker H B, Wall T F. Effect of specular reflection of hemispherical surface pyrometer on emissivity measurement[J]. Journal of Physics E: Scientific Instruments, 14, 998-1001(1981).
[17] Bedford R E, Ma C K, Chu Z X et al. Calculation of the radiant characteristics of a plane diffuse surface covered by a specular hemisphere[J]. Journal of Physics E: Scientific Instruments, 21, 785-791(1988).
[18] Huang S J, Cheng X M, Zhang T et al. A shielding method and device for high reflectivity infrared radiation measurement[P]. China.
[19] Hao X P, Song J, Xu M et al. Vacuum radiance-temperature standard facility for infrared remote sensing at NIM[J]. International Journal of Thermophysics, 39, 1-14(2018).
[20] Yang Z, Yang L. Calculation and error analysis of infrared temperature measurement using reflected temperature compensation[J]. Optical Technique, 34, 154-156(2008).
[21] Yang Z, Zhang S C, Yang L. Reflection temperature compensation method and its experimental verification[J]. Optical Precision Engineering, 18, 1959-1964(2010).
[22] Wei S L, Han L W, Cheng F Y. Compensation algorithm to improve the influence of ambient light on the infrared temperature measurement accuracy of a strong reflector surface[J]. Infrared Technology, 42, 1179-1184(2020).
[23] Wei S L, Wang J S, Han L W. Algorithm of compensation infrared temperature measurement error on strong reflector[J]. Laser&Infrared, 49, 187-193(2019).
[24] Höser D, Wallimann R, Von Rohr P R. Uncertainty analysis for emissivity measurement at elevated temperatures with an infrared camera[J]. International Journal of Thermophysics, 37, 1-17(2016).
[28] Zhang C G. The research of infrared radiation temperature measurement key techniques[D](2013).
[30] Müller B, Renz U. Development of a fast fiber-optic two-color pyrometer for the temperature measurement of surfaces with varying emissivities[J]. Review of Scientific Instruments, 72, 3366-3374(2001).
[31] Hosseini S B, Beno T, Johansson S et al. A methodology for temperature correction when using two-color pyrometers-compensation for surface topography and material[J]. Experimental Mechanics, 54, 369-377(2014).
[32] Lowe D, Machin G, Sadli M. Correction of temperature errors due to the unknown effect of window transmission on ratio pyrometers using an in situ calibration standard[J]. Measurement, 68, 16-21(2015).
[33] Ke W N, Zhu D Q, Cai G B. Simulation and analysis of spectral emissivity of metal[J]. Acta Aeronautica ET Astronautica Sinica, 31, 2139-2145(2010).
[34] Che X J. Development of blackbody converting-type method and instrument for precise measurement of surface temperature[D](2017).
[37] Yang Z J, Dai J M, Lin Y et al. A multi-spectral pyrometer for measuring cathode temperature field of vacuum arc plasma discharge[J]. Spectroscopy and Spectral Analysis, 41, 60-64(2021).
[38] Dai J M. Study of the technique of multi-spectral radiation thermometry[D](1995).
[39] Dai J M, Yang M H, Chu Z X. Multi-wavelength pyrometer and its application[J]. Journal of Infrared and Millimeter Waves, 14, 461-466(1995).
[40] Dai J M. Survey of radiation thermometry[J]. Techniques of Automation &Applications, 23, 1-7(2004).
[41] Wang Z T, Dai J M, Yang S. Research on a multispectral thermal imager for true temperature field measurement of explosion flames[J]. Spectroscopy and Spectral Analysis, 43, 3885-3890(2023).
[42] Ujihara K. Reflectivity of metals at high temperatures[J]. Journal of Applied Physics, 43, 2376-2383(1972).
[43] Decker D L, Hodgkin V A. Wavelength and temperature dependence of the absolute reflectance of metals at visible and infrared wavelengths[J]. Natl. Bur. Stand. US Spec. Publ, 620, 190-200(1981).
[44] Li X M, Jiang H M, Zhang T Y. Reflectivity change of 45# steel at 3.8 μm under 915 nm laser irradiation[J]. Laser & Optoelectronics Progress, 54, 071401(2017).
[45] Long C, Chen J Y, Yang Y C. Temperature dependence of reflectance and irradiation of the ground metallic target[J]. Chinese Journal of Luminescence, 37, 1566-1570(2016).
[46] Jia H Y, Zhao J M, Sun Y X et al. A method for measuring the cavity surface temperature of a semiconductor laser[P]. China.
[47] Krenek S, Anhalt K, Lindemann A et al. A study on the feasibility of measuring the emissivity with the laser-flash method[J]. International Journal of Thermophysics, 31, 998-1010(2010).
[48] Iuchi T, Furukawa T. Some considerations for a method that simultaneously measures the temperature and emissivity of a metal in a high temperature furnace[J]. Review of Scientific Instruments, 75, 5326-5332(2004).
[49] Iuchi T, Gogami A. Simultaneous measurement of emissivity and temperature of silicon wafers using a polarization technique[J]. Measurement, 43, 645-651(2010).
[50] Machin G, Anhalt K, Battuello M et al. The European project on high temperature measurement solutions in industry (HiTeMS)–a summary of achievements[J]. Measurement, 78, 168-179(2016).
[51] Che X J, Xie Z. Surface tmperature measurement with unknown emissivity using a two-color Pyrometer placed with a reflector[C], 398, 012005(2018).
[52] Yao C C, Ge X S, Cheng S X et al. The research on a new kind of blackbody radiation source[J]. Journal of Engineering Thermophysics, 12, 164-168(1991).
[53] Zhang P. A study of the system error of surface pyrometer[J]. Journal of Infrared and Millimeter Waves, 5, 164-168(1986).
[54] Turner S F, Metcalfe S F, Mellor A et al. Accurate thermal imaging of low-emissivity surfaces using approximate blackbody cavities[C], 8354, 309-316(2012).
[55] Song Y. Study of spectral emissivity on-line measurement technology[D](2009).
[56] Che X J, Xie Z. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: Methodology, implementation, and validation[J]. IEEE Transactions on Instrumentation and Measurement, 66, 1845-1855(2017).
[57] Krapez J C, Belanger C, Cielo P. A double-wedge reflector for emissivity enhanced pyrometry[J]. Measurement Science and Technology, 1, 857-864(1990).
[58] Cielo P G, Krapez J C, Lamontagne M et al. Conical-cavity fiber optic sensor for temperature measurement in a steel furnace[J]. Optical Engineering, 32, 486-493(1993).
[59] Krapez J C, Cielo P G, Lamontagne M. Reflecting-cavity IR temperature sensors: an analysis of spherical, conical, and double-wedge geometries[J]. Proc. SPIE, 1320, 186-201(1990).
[60] Huang S J, Wang L X, Hu X et al. Research on accurate non-contact temperature measurement method for telescope mirror[J]. Optics Express, 31, 21521-21541(2023).
[61] Peacock G R. Review of noncontact process temperature measurements in steel manufacturing[C], 3700, 171-189(1999).
[62] Ridley I, Beynon T G R. Infrared temperature measurement of bright metal strip using multiple reflection in a roll-strip wedge to enhance emissivity[J]. Measurement, 7, 171-176(1989).
[63] Terada D, Takigawa R, Iuchi T. Automatically emissivity-compensated radiation thermometry[C], 1065, 122008(2018).
[64] Zhu C X, Hobbs M J, Willmott J R. An accurate instrument for emissivity measurements by direct and indirect methods[J]. Measurement Science and Technology, 31, 044007(2020).
[65] Zhu C X. Design and realisation of high accuracy emissivity measurement instruments for radiation thermometry[D](2019).
[66] Wang J L, Xie Z, Che X J. A novel accuracy validation method of surface temperature measurement by the ReFaST pyrometer[J]. IEEE Transactions on Instrumentation and Measurement, 72, 1-9(2022).
[67] Xie Z, Wang J L, Che X J. Research on the methodology and instrument of traceable measurement of surface temperature based on an “ideal plane” model[J]. AIP Advances, 12, 065009(2022).
[68] Gao K M, Liu H L, Chen W Q. Study on radiation pyrometer preceded with a reflector[J]. Journal of Northeastern University (Natural Science), 5, 39-47(1984).
[69] Zhang Z M, Zhou Y H. An effective emissivity model for rapid thermal processing using the net-radiation method[J]. International Journal of Thermophysics, 22, 1563-1575(2001).
[70] Zhou Y H, Shen Y J, Zhang Z M et al. A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces[J]. International Journal of Heat and Mass Transfer, 45, 1945-1949(2002).
Get Citation
Copy Citation Text
Shan-Jie HUANG, Jin-Song ZHAO, Ling-Xue WANG, Teng-Fei SONG, Fang-Yu XU, Yi CAI. Research progress on infrared temperature measurement for low emissivity objects[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 234
Category: Infrared Optoelectronic System and Application Technology
Received: Jun. 23, 2024
Accepted: --
Published Online: Mar. 14, 2025
The Author Email: Ling-Xue WANG (neobull@bit.edu.cn), Fang-Yu XU (xu_fangyu@ynao.ac.cn)