Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 234(2025)

Research progress on infrared temperature measurement for low emissivity objects

Shan-Jie HUANG1,2, Jin-Song ZHAO3, Ling-Xue WANG1、*, Teng-Fei SONG2, Fang-Yu XU2、**, and Yi CAI1
Author Affiliations
  • 1School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China
  • 2Yunnan Observatories,Chinese Academy of Sciences,Yunnan 650216,China
  • 3Kunming Institute of Physics,Yunnan 650223,China
  • show less
    Figures & Tables(14)
    Schematic diagram of infrared temperature measurement based on radiation shielding
    Schematic diagram of infrared temperature measurement based on external radiation sources
    Infrared temperature measurement results of optical mirrors outdoors
    Temperature dependent reflectance curves of six metals at different wavelengths:(a)λ= 0.69 μm;(b)λ= 1.06 μm;(c)λ=10.6 μm
    The temperature dependent reflectance curves of copper at different wavelengths
    Schematic diagram of the temperature measurement principle of Land surface pyrometer
    Temperature measurement principle diagram of ReFaST:(a)direct measurement of the metal radiance;(b)measurement of the metal radiance after amplification by a reflector
    Schematic diagram of infrared temperature measurement principle based on cylindrical reflector:(a)direct measurement of the metal radiance;(b)measurement of the metal radiance after amplification by a reflector;(c)measurement of specular reflection parameter
    Schematic diagrams of the proposed IMT designs:(a)parabolic IMT;(b)conical IMT
    Temperature control principle of IMT and experimental diagram of optical mirror temperature measurement:(a)schematic diagram of the IMT’s temperature control system;(b)a photo of the IMT measuring an optical mirror
    • Table 1. Basic principles, advantages and disadvantages of four temperature measurement methods based on environmental radiation suppression

      View table
      View in Article

      Table 1. Basic principles, advantages and disadvantages of four temperature measurement methods based on environmental radiation suppression

      测温方法基本原理优点缺点
      基于辐射屏蔽装置的测温法利用屏蔽装置遮挡住环境辐射屏蔽装置结构较简单;可用于室外环境只能用于高温低辐射率物体。测量常温低辐射率物体时,屏蔽装置引入的辐射大于低辐射率物体辐射。
      基于液氮制冷的测温法液氮制冷镜筒以消除环境辐射几乎可以完全消除环境辐射的干扰;测量精度高成本高昂,无法用于室外或大尺度的低辐射率物体
      基于校正算法的测温法利用金属膜并结合算法,校正环境辐射方法简单易实现,测温成本低金属膜与环境的温差,金属膜和低辐射率物体反射的环境辐射差异会引入测温误差
      基于外部辐射源的测温法利用外部辐射源并结合算法,校正环境辐射只需两个常规物体、简单易实现;测温成本最低两反射像处的低辐射率物体温差,以及对物体及反射像的测温误差都会恶化最终测温误差
    • Table 2. Basic principles, advantages and disadvantages of temperature measurement methods based on high emissivity bands

      View table
      View in Article

      Table 2. Basic principles, advantages and disadvantages of temperature measurement methods based on high emissivity bands

      测温方法基本原理优点缺点
      单色测温法利用窄波段的单色辐射功率来确定被测目标温度只需要一个探测器,测温成本低、结构简单辐射率设定值与实际值的差异,灰尘、烟雾、镜头污染物,以及被测目标未充满视场等因素会带来严重的测温误差。
      比色测温法两个测温波长的窄带光谱辐射功率的比值获得被测目标温度可以克服包括烟雾、灰尘、蒸汽、空气颗粒,被测目标没有覆盖视场等因素引起的测温误差两个测温波长的光谱辐射率差异会带来较大的测温误差
      多波长测温法利用多个波长的光谱辐射亮度信号获得被测目标温度测温精度高,还可同时获得物体的光谱辐射率测温成本较高;建立的光谱辐射率函数形式与实际函数的差异会引入测温误差
    • Table 3. Basic principles, advantages and disadvantages of temperature measurement methods based on optical properties

      View table
      View in Article

      Table 3. Basic principles, advantages and disadvantages of temperature measurement methods based on optical properties

      测温方法基本原理优点缺点
      基于反射特性的测温法利用温度与反射率的关系,测量反射率获得温度值测温范围广,可远距离测量需要极高的反射率测量精度
      基于吸收特性的测温法利用激光闪光技术测量金属的激光吸收率并视为金属辐射率;结合辐亮度的测量值获得温度值可远距离测量吸收率和温度测量辐射亮度时会受到环境辐射的反射干扰,只能用于高温金属片
      基于偏振特性的测温法根据波长、偏振辐射亮度比值和粗糙度等参数计算出低辐射率物体辐射率;结合辐亮度的测量值获得温度值利用三个辐射亮度,计算出辐射率测量三个辐射亮度时会受到环境辐射的反射干扰,只能用于高温物体
    • Table 4. Core principles and advantages and disadvantages of five temperature measurement methods for low emissivity objects

      View table
      View in Article

      Table 4. Core principles and advantages and disadvantages of five temperature measurement methods for low emissivity objects

      测温方法核心原理优点缺点
      基于环境辐射抑制的测温法抑制环境辐射的干扰,提高辐射测量信噪比实现了对低辐射率物体辐射的真正测量测温精度低;屏蔽环境辐射的成本高;实际场景难以满足校正算法的假设条件
      高辐射率涂层测温法刷涂高辐射率涂层,涂层与低辐射率物体等温等价于提高了低辐射率物体辐射率;测温精度高高辐射率涂层会损害低辐射率物体表面
      高辐射率波段测温法选择辐射率高的测温波段高辐射率提高了辐射测量信噪比;测温精度高于基于环境辐射抑制的测温法低辐射率物体在近红外波段的辐射率仍然较低;难以用于常温或低温低辐射率物体
      基于光学特性的测温法建立并利用光学特性和温度的关系测温无需直接测量辐射率反射率测温法需要极高的反射率测量精度;基于吸收和偏振特性测温易受环境辐射的反射干扰
      基于反射器的测温法利用反射器放大低辐射率物体辐射并屏蔽环境辐射;同时,结合反射器的温度调制,以分离出目标辐射大幅度提高了辐射测量信噪比;测温精度高目前只能近距离测温
    Tools

    Get Citation

    Copy Citation Text

    Shan-Jie HUANG, Jin-Song ZHAO, Ling-Xue WANG, Teng-Fei SONG, Fang-Yu XU, Yi CAI. Research progress on infrared temperature measurement for low emissivity objects[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 234

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Optoelectronic System and Application Technology

    Received: Jun. 23, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: Ling-Xue WANG (neobull@bit.edu.cn), Fang-Yu XU (xu_fangyu@ynao.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2025.02.012

    Topics