Chinese Journal of Lasers, Volume. 47, Issue 7, 701005(2020)
Progress in Single-Mode and Directly Modulated Vertical-Cavity Surface-Emitting Lasers
[1] Soda H, Iga K I, Kitahara C et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979).
[3] Koyama F. Recent advances of VCSEL photonics[J]. Journal of Lightwave Technology, 24, 4502-4513(2006).
[4] Larsson A. Advances in VCSELs for communication and sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1552-1567(2011).
[5] Michalzik R. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers[M]. Berlin Heidelberg: Springer, 166(2013).
[7] Wilmsen C, Temkin H, Coldren L A[M]. Vertical-cavity surface-emitting lasers, design, fabrication, characterization and applications(1999).
[8] Li H E, Iga K. Vertical-cavity surface-emitting laser devices[M]. Berlin, Heidelberg: Springer, 6(2003).
[9] Cheng J, Dutta N K[M]. Vertical-cavity surface-emitting lasers: technology and applications, 10(2018).
[10] Huang Y Z. Influence of lateral propagating modes on laser output characteristics in selectively oxidized vertical cavity surface-emitting lasers with double oxide layers[J]. Journal of Applied Physics, 86, 3519-3524(1999).
[11] Wang Z F, Ning Y Q, Zhang Y et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array[J]. Optics Express, 18, 23900-23905(2010).
[12] Mao M M, Xu C, Xie Y Y et al. Implant-defined 3×3 in-phase coherently coupled vertical cavity surface emitting lasers array[J]. IEEE Photonics Journal, 5, 1502606(2013).
[14] Liu A J, Chen W, Xing M X et al. Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser[J]. Applied Physics Letters, 96, 151103(2010).
[16] Wang X L, Zou Y G, Shi L L et al. Polarization-stabilized tunable VCSEL with internal-cavity sub-wavelength grating[J]. Optics Express, 27, 35499-35511(2019).
[20] Tell B, Lee Y H. Brown-Goebeler K F, et al. High-power CW vertical-cavity top surface-emitting GaAs quantum well lasers[J]. Applied Physics Letters, 57, 1855-1857(1990).
[21] Morgan R A, Guth G D, Focht M W et al. Transverse mode control of vertical-cavity top-surface-emitting lasers[J]. IEEE Photonics Technology Letters, 5, 374-377(1993).
[22] Kapon E, Sirbu A. Power-efficient answer[J]. Nature Photonics, 3, 27-29(2009).
[23] Amann M C, Hofmann W. InP-based long-wavelength VCSELs and VCSEL arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 861-868(2009).
[24] Onishi Y, Saga N, Koyama K et al. Long-wavelength GaInNAs vertical-cavity surface-emitting laser with buried tunnel junction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 838-843(2009).
[25] Dallesasse J M, Holonyak N. Jr, Sugg A R, et al. Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices[J]. Applied Physics Letters, 57, 2844-2846(1990).
[26] Huffaker D L, Deppe D G, Kumar K et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Applied Physics Letters, 65, 97-99(1994).
[27] Choquette K D, Geib K M. Ashby C I H, et al. Advances in selective wet oxidation of AlGaAs alloys[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 916-926(1997).
[28] Dallesasse J M, Holonyak N. Jr. Oxidation of Al-bearing III-V materials: a review of key progress[J]. Journal of Applied Physics, 113, 051101(2013).
[29] Muller M, Hofmann W, Grundl T et al. 1550-nm high-speed short-cavity VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1158-1166(2011).
[30] Spiga S, Soenen W, Andrejew A et al. Single-mode high-speed 1.5-μm VCSELs[J]. Journal of Lightwave Technology, 35, 727-733(2017).
[31] Caliman A, Mereuta A, Wolf P et al. 25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs[J]. Optics Express, 24, 16329-16335(2016).
[32] Lu T C, Kao C C, Kuo H C et al. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser[J]. Applied Physics Letters, 92, 141102(2008).
[33] Kuramoto M, Kobayashi S, Akagi T et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide[J]. Applied Physics Letters, 112, 111104(2018).
[34] Jung C, Jager R, Grabherr M et al. 4.8 mW single mode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 33, 1790-1791(1997).
[35] Blokhin S A, Maleev N A, Kuzmenkov A G et al. Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots[J]. IEEE Journal of Quantum Electronics, 42, 849-856(2006).
[36] Martinsson H, Vukusic J A, Grabberr M et al. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief[J]. IEEE Photonics Technology Letters, 11, 1536-1538(1999).
[37] Haglund A, Gustavsson J S, Vukusic J et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief[J]. IEEE Photonics Technology Letters, 16, 368-370(2004).
[38] Young E W, Choquette K D, Chuang S L et al. Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation[J]. IEEE Photonics Technology Letters, 13, 927-929(2001).
[39] Nishiyama N, Arai M, Shinada S et al. Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 12, 606-608(2000).
[40] Chang K S, Song Y M, Lee Y T. Stable single-mode operation of VCSELs with a mode selective aperture[J]. Applied Physics B, 89, 231-234(2007).
[41] Al-Omari A N, Lear K L, Hamad H. High-speed 980 nm VCSELs with integrated distributed losses for mode control[J]. Proceedings of SPIE, 7615, 76150P(2010).
[42] Ueki N, Sakamoto A, Nakamura T et al. Single-transverse-mode 3.4-mW emission of oxide-confined 780-nm VCSELs[J]. IEEE Photonics Technology Letters, 11, 1539-1541(1999).
[43] Mukoyama N, Otoma H, Sakurai J et al. VCSEL array-based light exposure system for laser printing[J]. Proceedings of SPIE, 6908, 69080H(2008).
[44] Kao H Y, Tsai C T, Leong S F et al. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100-300 m in OM4 MMF[J]. Photonics Research, 6, 666-673(2018).
[45] Song D S, Kim S H, Park H G et al. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 80, 3901-3903(2002).
[46] Yokouchi N, Danner A J, Choquette K D. Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures[J]. Applied Physics Letters, 82, 1344-1346(2003).
[47] Danner A J, Raftery JJ. Jr, Leisher P O, et al. Single mode photonic crystal vertical cavity lasers[J]. Applied Physics Letters, 88, 091114(2006).
[48] Liu A J, Xing M X, Qu H W et al. Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser[J]. Applied Physics Letters, 94, 191105(2009).
[49] Liu A J, Chen W, Zhou W J et al. Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers[J]. Journal of Physics D: Applied Physics, 44, 115104(2011).
[50] Danner A J, Kim T S, Choquette K D. Single fundamental mode photonic crystal vertical cavity laser with improved output power[J]. Electronics Letters, 41, 325(2005).
[51] Furukawa A, Sasaki S, Hoshi M et al. High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure[J]. Applied Physics Letters, 85, 5161-5163(2004).
[52] Liu A J, Chen W, Qu H W et al. Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence[J]. Laser Physics Letters, 7, 213-217(2010).
[54] Kashino J, Inoue S, Matsutani A et al. Transverse mode control of VCSELs using angular dependent high-contrast grating mirror. [C]∥IEEE Photonics Conference (IPC), Septemper 8-12, 2013, Hyatt Regency Bellevue, Washington, USA. New York: IEEE, 244-245(2013).
[55] Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics, 1, 119-122(2007).
[56] Fischer A J, Choquette K D, Chow W W et al. High single-mode power observed from a coupled-resonator vertical-cavity laser diode[J]. Applied Physics Letters, 79, 4079-4081(2001).
[58] Ledentsov N. Jr., Shchukin V A, Ledentsov N N, et al. Direct evidence of the leaky emission in oxide-confined vertical cavity lasers[J]. IEEE Journal of Quantum Electronics, 52, 2400207(2016).
[59] Ahn J, Lu D, Deppe D G. All-epitaxial, lithographically defined, current- and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning[J]. Applied Physics Letters, 86, 021106(2005).
[61] Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc.(2012).
[62] Johnson R H, Kuchta D M. 30 Gb/s directly modulated 850 nm datacom VCSELs. [C]∥2008 Conference on Lasers and Electro-Optics, May 4-9, 2008, San Jose, California, USA. Washington, D.C.: OSA, CPDB2(2008).
[63] Westbergh P, Gustavsson J S, Haglund A et al. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL[J]. Electronics Letters, 45, 366-368(2009).
[64] Blokhin S A, Lott J A, Mutig A et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s[J]. Electronics Letters, 45, 501-502(2009).
[67] Kuchta D M, Rylyakov A V, Doany F E et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 27, 577-580(2015).
[68] Lavrencik J, Varughese S, Thomas V A et al. 102 Gbps PAM-2 over 50 m OM5 fiber using 850 nm multimode VCSELs. [C]∥2019 IEEE Photonics Conference (IPC), September 29-October 3, 2019, San Antonio, TX, USA. New York: IEEE, 8908516(2019).
[69] Kuchta D M, Schow C L, Rylyakov A V et al. A 56.1 Gb/s NRZ modulated 850 nm VCSEL-based optical link. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, California. Washington, D.C.: OSA, OW1B, 5(2013).
[70] Chi K L, Yen J L, Wun J M et al. Strong wavelength detuning of 850 nm vertical-cavity surface-emitting lasers for high-speed (>40 Gbit/s) and low-energy consumption operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 470-479(2015).
[71] Liu M, Wang C Y, Feng M et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs. [C]∥Optical Fiber Communication Conference, March 20-22, 2016, Anaheim, California. Washington, D.C.: OSA, Tu3D, 2(2016).
[72] Chang Y C, Wang C S, Coldren L A. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation[J]. Electronics Letters, 43, 1022-1023(2007).
[73] Wolf P, Moser P, Larisch G et al. High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701207(2013).
[74] Moser P, Lott J A, Larisch G et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. Journal of Lightwave Technology, 33, 825-831(2015).
[75] Rosales R, Zorn M, Lott J A. 30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs[J]. IEEE Photonics Technology Letters, 29, 2107-2110(2017).
[76] Nagashima K, Kise T, Ishikawa Y et al. 1060-nm 28-Gb/s×4-channel modules operated over the case temperature range[J]. IEEE Photonics Technology Letters, 27, 2489-2491(2015).
[77] Simpanen E, Gustavsson J S, Haglund E et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate[J]. Electronics Letters, 53, 869-871(2017).
[78] Anan T, Suzuki N, Yashiki K. High-speed 1.1-μm-range InGaAs VCSELs. [C]∥2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, February 24-28, 2008, San Diego, California, United States. Washington, D.C.: OSA, OThS5(2008).
[79] Graham L A, Lei C, Choquette K D et al. The next generation of high speed VCSELs at Finisar[J]. Proceedings of SPIE, 8276, 827602(2012).
[80] Xie C, Li N, Huang S H et al. The next generation high data rate VCSEL development at SEDU[J]. Proceedings of SPIE, 8639, 863903(2012).
[82] Kuchta D M, Rylyakov A V, Schow C L et al. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 ℃[J]. Journal of Lightwave Technology, 33, 802-810(2015).
[83] Ledentsov N, Kropp R. Agustin M, et al. Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150 ℃[J]. Proceedings of SPIE, 10552, 105520P(2018).
[84] Chi K L, Jiang J W, Yen J L et al. Energy efficient 850 nm vertical-cavity surface-emitting lasers with extremely low driving-current density for >40 Gbit/s error-free transmissions from RT to 85 ℃. [C]∥Optical Fiber Communication Conference, March 22-26, 2015, Los Angeles, California. Washington, D.C.: OSA, M2D, 6(2015).
[85] Wang H L, Fu W N, Qiu J Y et al. 850 nm VCSELs for 50 Gb/s NRZ error-free transmission over 100-meter OM4 and up to 115 ℃ operation. [C]∥Optical Fiber Communication Conference (OFC) 2019, March 3-7, 2019, San Diego, California. Washington, D.C.: OSA, W3A, 1(2019).
[86] Hofmann W, Moser P, Wolf P et al. 44 Gb/s VCSEL for optical interconnects. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California. Washington, D.C.: OSA, PDPC5(2011).
[87] Larisch G, Moser P, Lott J A et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photonics Technology Letters, 28, 2327-2330(2016).
[88] Miller D. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).
[89] Moser P, Lott J A, Wolf P et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 48, 1292-1294(2012).
[91] Li H, Wolf P, Moser P et al. Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 405-413(2015).
[92] Guenter J K, Lei C, Suzuki T et al. 1060 nm 28-Gbps VCSEL developed at Furukawa[J]. Proceedings of SPIE, 9001, 900104(2014).
[94] Qiu J Y, Yu X, Feng M. 85 ℃ operation of single-mode 850 nm VCSELs for high speed error-free transmission up to 1 km in OM4 fiber. [C]∥Optical Fiber Communication Conference (OFC) 2019, March 3-7, 2019, San Diego, California. Washington, D.C.: OSA, W3A, 4(2019).
[97] Stepniak G, Lewandowski A, Agustin M et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF[J]. Electronics Letters, 52, 633-635(2016).
[98] Qiao P F, Yang W J. Chang-Hasnain C J. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals[J]. Advances in Optics and Photonics, 10, 180-245(2018).
[100] Mateus C F R, Huang M C Y, Chen L et al. Broad-band mirror (1.12-1.62 μm) using a subwavelength grating[J]. IEEE Photonics Technology Letters, 16, 1676-1678(2004).
[101] Boutami S, Ben Bakir B, Leclercq J L et al. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter[J]. Optics Express, 14, 3129-3137(2006).
[102] Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors[J]. Optics Express, 16, 3456-3462(2008).
[103] Karagodsky V, Sedgwick F G. Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors[J]. Optics Express, 18, 16973-16988(2010).
[104] Inoue S, Kashino J, Matsutani A et al. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs[J]. Japanese Journal of Applied Physics, 53, 090306(2014).
[106] Hofmann W, Chase C, Müller M et al. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser[J]. IEEE Photonics Journal, 2, 415-422(2010).
[107] Boutami S, Benbakir B, Leclercq J L et al. Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror[J]. Applied Physics Letters, 91, 071105(2007).
[111] Liu A J, Zheng W H, Bimberg D. Comparison between high- and zero-contrast gratings as VCSEL mirrors[J]. Optics Communications, 389, 35-41(2017).
[112] Liu A J. Hofmann W H E, Bimberg D H. Integrated high-contrast-grating optical sensor using guided mode[J]. IEEE Journal of Quantum Electronics, 51, 6600108(2015).
[113] Liu A J, Zheng W H, Bimberg D. VCSEL with finite-size high-contrast metastructure[J]. Proceedings of SPIE, 10812, 1081202(2018).
[114] Yang B, Liu A J. Design of low-loss hybrid vertical cavity with a monolithic diffuser[J]. Optics Communications, 459, 124917(2020).
[115] Zhang J, Yang B, Liu A J. Design of 940-nm VCSEL with metastructure[J]. Proceedings of SPIE, 11182, 111820O(2019).
[116] Liu A J, Zheng W H, Bimberg D. Unidirectional transmission in finite-size high-contrast gratings. [C]∥Asia Communications and Photonics Conference 2016, November 2-5, 2016, Wuhan. Washington, D.C.: OSA, AF2A, 52(2016).
[117] Liu A J, Yang B, Wolf P et al. GaAs-based subwavelength grating on an AlOx layer for a vertical-cavity surface-emitting laser[J]. OSA Continuum, 3, 317-324(2020).
[118] Li K, Rao Y, Chase C et al. Monolithic high-contrast metastructure for beam-shaping VCSELs[J]. Optica, 5, 10-13(2018).
[119] Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser[J]. Nature Photonics, 2, 180-184(2008).
[120] Liu A J, Wolf P, Schulze J H et al. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer[J]. IEEE Photonics Journal, 8, 2700509(2016).
[121] Horie Y, Arbabi A, Han S et al. High resolution on-chip optical filter array based on double subwavelength grating reflectors[J]. Optics Express, 23, 29848-29854(2015).
[122] Haglund E, Gustavsson J S, Bengtsson J et al. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings[J]. Optics Express, 24, 1999-2005(2016).
[123] Rao Y, Yang W J, Chase C et al. Long-wavelength VCSEL using high-contrast grating[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701311(2013).
[124] Ferrara J, Yang W J, Zhu L et al. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate[J]. Optics Express, 23, 2512-2523(2015).
[125] Park G C, Xue W Q, Piels M et al. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics[J]. Scientific Reports, 6, 38801(2016).
[126] Kumari S, Haglund E P, Gustavsson J S et al. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm[J]. Laser & Photonics Reviews, 12, 1700206(2018).
[127] Szczerba K, Lengyel T, Karlsson M et al. 94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization[J]. IEEE Photonics Technology Letters, 28, 2519-2521(2016).
[128] Sun Y, Lingle R, Chang F et al. SWDM PAM4 transmission from 850 to 1066 nm over NG-WBMMF using 100G PAM4 IC chipset with real-time DSP[J]. Journal of Lightwave Technology, 35, 3149-3158(2017).
[129] Lavrencik J, Varughese S, Thomas V A et al. 4λ×100 bps VCSEL PAM-4 transmission over 105 m of wide band multimode fiber. [C]∥2017 Optical Fiber Communications Conference and Exhibition (OFC), March 19-23, 2017, Los Angeles, CA, United States. Washington, D.C.: OSA, Tu2B, 6(2017).
[130] Puerta R, Agustin M, Chorchos L et al. Effective 100 Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF[J]. Journal of Lightwave Technology, 35, 423-429(2017).
[131] Lu I C, Kuo H C, Lin W et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 444-452(2015).
[132] Lu C Y, Chang S W, Chuang S L et al. Metal-cavity surface-emittingmicrolaser at room temperature[J]. Applied Physics Letters, 96, 251101(2010).
[133] Ledentsov N, Agustin M, Shchukin V A et al. Quantum dot 850 nm VCSELs with extreme high temperature stability operating at bit rates up to 25 Gbit/s at 150 ℃[J]. Solid-State Electronics, 155, 150-158(2019).
[135] Moench H, Deppe C, Dumoulin R et al. Modular VCSEL solution for uniform line illumination in the kW range[J]. Proceedings of SPIE, 8241, 82410B(2012).
[136] Zhou D, Seurin J-F, Xu G et al. Progress on high-power 808nm VCSELs and applications[J]. Proceedings of SPIE, 10122, 1012206(2017).
[137] Rosprim J P, Wang L, Podva D et al. Progress in optimization of high-power, high-speed VCSEL arrays[J]. Proceedings of SPIE, 10122, 1012205(2017).
Get Citation
Copy Citation Text
Liu Anjin. Progress in Single-Mode and Directly Modulated Vertical-Cavity Surface-Emitting Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701005
Special Issue:
Received: Jan. 6, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Anjin Liu (liuanjin@semi.ac.cn)