Journal of Inorganic Materials, Volume. 34, Issue 1, 49(2019)

Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes

Xiao WANG, Ran-Ran WANG, Liang-Jing SHI, Jing SUN, [in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    References(67)

    [1] CHENG H Y, HUANG L Q, LUO J et al. Preparation of flexible dye-sensitized solar cells based on hierarchical structure ZnO nanosheets[D]. Journal of Inorganic Materials, 33, 507-514(2018).

    [2] DENG H, YANG X, ZHANG J et al. 9(3): 36-1-26[D]. their advanced optoelectronic applications. Nano-Micro Letters(2017).

    [3] GUERRERO A. 9(1): 10-1-16[D]. GARCIA-BELMONTE G. Recent advances to understand morphology stability of organic photovoltaics. Nano- Micro Letters(2016).

    [4] CHEN D, HUANG J Y, LÜ J G et al. Performances of GaN-based LEDs with AZO films as transparent electrodes[D]. Journal of Inorganic Materials, 28, 649-652(2013).

    [5] HAN S S, LIU L Y, SHAN Y K et al. Research of graphene/ antireflection nanostructure composite transparent conducting films[D]. Journal of Inorganic Materials, 32, 197-202(2017).

    [6] HUANG W, LI H, ZHU J Y et al. Preparation and characterization of graphene/carbon nanotube hybrid thin films by drop-coating[D]. Journal of Inorganic Materials, 32, 203-209(2017).

    [7] LEE H, LEE J, LEE P et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel[D]. Nanoscale, 4, 6408-6414(2012).

    [8] CUI Y, HU L B, WU H. Metal nanogrids, nanowires, and nanofibers for transparent electrodes[D]. MRS Bulletin, 36, 760-765(2011).

    [9] CHEN Y, HUANG L, LI S et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks[D]. Inorganic Chemistry, 53, 4440-4444(2014).

    [10] HE S Y, TUAN H Y, YANG H J. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications[D]. Langmuir, 30, 602-610(2014).

    [11] CHANG Y, LYE M L, ZENG H C. Large-scale synthesis of high-quality ultralong copper nanowires[D]. Langmuir, 21, 3746-3748(2005).

    [12] HA Y C, RATHMELL A R, YE S et al. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires[D]. Small, 10, 1771-1778(2014).

    [13] RATHMELL A R, WILEY B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates[D]. Advanced Materials, 23, 4798-4803(2011).

    [14] WANG R, WEN M, ZHANG D et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes[D]. Journal of the American Chemical Society, 134, 14283-14286(2012).

    [15] CHEN Y, GUO H, LIN N et al. 3: 2323-1-8[D](2013).

    [16] SHI L, WANG R, WANG X et al. Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes[D]. Journal of Materials Chemistry C, 6, 1048-1056(2018).

    [17] LIANG J, LIU Z, YANG Y et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process[D]. The Journal of Physical Chemistry B, 107, 12658-12661(2003).

    [18] RATHMELL A R, STEWART I E, YE S et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films[D]. Chemical Communications, 50, 2562-2564(2014).

    [19] NI X, ZHANG D, ZHANG X et al. One-step preparation of copper nanorods with rectangular cross sections[D]. Solid State Communications, 139, 412-414(2006).

    [20] HE G, JIN M, ZHANG H et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[D]. Angewandte Chemie, 50, 10560-10564(2011).

    [21] CUI F, DOU L, YU Y et al. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors[D]. Nano Letters, 15, 7610-7615(2015).

    [22] CHI M, NGUYEN M, RATHMELL A R et al. Synthesis of oxidation- resistant cupronickel nanowires for transparent conducting nanowire networks[D]. Nano Letters, 12, 3193-3199(2012).

    [23] SHI L, WANG R, WANG X et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes[D]. Small, 11, 4737-4744(2015).

    [24] DE S, diameter. Nanotechnology, LYONS P E, SOREL S et al. 23(18): 185201-1-10[D](2012).

    [25] GIUSTI G, LAGRANGE M, LANGLEY D P et al. Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing[D]. Nanoscale, 7, 17410-17423(2015).

    [26] KIM A, WON Y, WOO K et al. All-solution-processed indium- free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells[D]. Advanced Functional Materials, 24, 2462-2471(2014).

    [27] COLEMAN J N, FINN D J, LOTYA M. Inkjet printing of silver nanowire networks[D]. ACS Applied Materials & Interfaces, 7, 9254-9261(2015).

    [28] LIN J, LU H, WU N et al. 106(9): 093302-1-4[D](2015).

    [29] BELL A P, BELLEW A T, MCCARTHY E K et al. Programmability of nanowire networks[D]. Nanoscale, 6, 9632-9639(2014).

    [30] COULL R, LYONS P E, SCARDACI V et al. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas[D]. Small, 7, 2621-2628(2011).

    [31] HAUGER T C. AL-RAFIA S M, BURIAK J M. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity[D]. ACS Applied Materials & Interfaces, 5, 12663-12671(2013).

    [32] BORCHERT J W, STEWART I E, YE S et al. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors[D]. Nanoscale, 7, 14496-14504(2015).

    [33] KOGA H, KOMODA N, NOGI M et al. 6(3): e93-1-8[D](2014).

    [34] CHEN G, DENG B, HSU P C et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes[D]. Nano Letters, 15, 4206-4213(2015).

    [35] KIM A, WON Y, YANG W et al. A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. npg[D]. Asia Mater., 6, e132-e132(2014).

    [36] DING S, GAO Y, JIU J et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[D]. ACS Applied Materials & Interfaces, 8, 6190-6199(2016).

    [37] CHEN Z, RATHMELL A R, YE S et al. Metal nanowire networks: the next generation of transparent conductors[D]. Advanced Materials, 26, 6670-6687(2014).

    [38] KIM A, LEE D, WON Y et al. 6: e105-1-9[D](2014).

    [39] HESS C, KIM F, TAO A et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy[D]. Nano Letters, 3, 1229-1233(2003).

    [40] LIU J W, WANG J L, WANG Z H et al. Manipulating nanowire assembly for flexible transparent electrodes[D]. Angewandte Chemie, 53, 13477-13482(2014).

    [41] CHO S, KANG S, KIM T et al. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices[D]. Nano Letters, 15, 7933-7942(2015).

    [42] CHENG W, JASON N N, SHEN W. Copper nanowires as conductive ink for low-cost draw-on electronics[D]. ACS Applied Materials & Interfaces, 7, 16760-16766(2015).

    [43] CAI W, CHA J J, GARNETT E C et al. Self-limited plasmonic welding of silver nanowire junctions[D]. Nature Materials, 11, 241-249(2012).

    [44] BELL A P, FAIRFIELD J A, MCCARTHY E K et al. Quantitative study of the photothermal properties of metallic nanowire networks[D]. ACS Nano, 9, 5551-5558(2015).

    [45] HAM J, HAN S, HONG S et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[D]. Advanced Materials, 26, 5808-5814(2014).

    [46] CHEN Y, CHUNG C H, SONG T B et al. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts[D]. ACS Nano, 8, 2804-2811(2014).

    [47] DAS S R, MAIZE K, SADEQUE S et al. 106(14): 143104-1-6[D]. silver nanowire network. Applied Physics Letters(2015).

    [48] WANG R, WANG T, ZHAI H et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors[D]. Nano Research, 9, 2138-2148(2016).

    [49] LU H, REN X, ZHANG D et al. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode[D]. ACS Nano, 8, 10980-10987(2014).

    [50] CHENG J Q, LU H F, ZHANG D et al. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach[D]. Advanced Functional Materials, 25, 4211-4218(2015).

    [51] CHEN Y, LIU H, XIONG W et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes[D]. Advanced Materials, 28, 7167-7172(2016).

    [52] WANG R, WANG X, ZHAI H et al. Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells[D]. ACS Applied Materials & Interfaces, 8, 28831-28837(2016).

    [53] CHEN L, LI Y, ZHAI H et al. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells[D]. Nano Research, 11, 1895-1904(2018).

    [54] CHEN L, LI Y, ZHAI H et al. Semi-transparent polymer solar cells with all-copper nanowire electrodes[D]. Nano Research, 11, 1956-1966(2018).

    [55] WANG R, WANG W, ZHAI H et al. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells[D]. Nano Research, 8, 3205-3215(2015).

    [56] HSU P C, LIU C, LIU X et al. Personal thermal management by metallic nanowire-coated textile[D]. Nano Letters, 15, 365-371(2015).

    [57] GUPTA R, KIRUTHIKA S, RAO K D et al. Visibly transparent heaters[D]. ACS Applied Materials & Interfaces, 8, 12559-12575(2016).

    [58] KANG J, KIM H, KIM K S et al. High-performance graphene- based transparent flexible heaters[D]. Nano Letters, 11, 5154-5158(2011).

    [59] JANAS D, KOZIOL K K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications[D]. Nanoscale, 6, 3037-3045(2014).

    [60] CELLE C, MAYOUSSE C, MOREAU E et al. Highly flexible transparent film heaters based on random networks of silver nanowires[D]. Nano Research, 5, 427-433(2012).

    [61] WANG R, WANG X, ZHAI H et al. Transparent heaters based on highly stable Cu nanowire films[D]. Nano Research, 9, 3924-3936(2016).

    [62] IM H G, JIN J, JUNG S H et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics[D]. ACS Nano, 8, 10973-10979(2014).

    [63] CHENG Y, WANG R, WANG S et al. Copper nanowire based transparent conductive films with high stability and superior stretchability[D]. Journal of Materials Chemistry C, 2, 5309-5316(2014).

    [64] CHENG Y, WANG R, WANG T et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications[D]. ACS Applied Materials & Interfaces, 8, 9297-9304(2016).

    [65] CHEN Z, RATHMELL A R, YE S et al. Optically transparent water oxidation catalysts based on copper nanowires[D]. Angewandte Chemie International Edition, 52, 13708-13711(2013).

    [66] LIU P, XIAO S, ZHU W et al. Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation[D]. Nano Letters, 15, 4853-4858(2015).

    [67] LEE M, MUN C, PARK S G et al. 3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors[D]. Advanced Materials, 27, 4290-4295(2015).

    Tools

    Get Citation

    Copy Citation Text

    Xiao WANG, Ran-Ran WANG, Liang-Jing SHI, Jing SUN, [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes[J]. Journal of Inorganic Materials, 2019, 34(1): 49

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 25, 2018

    Accepted: --

    Published Online: Feb. 4, 2021

    The Author Email:

    DOI:10.15541/jim20180243

    Topics