Chinese Journal of Lasers, Volume. 48, Issue 11, 1100001(2021)

Advances in Ga2O3-Based Solar-Blind Ultraviolet Photodetectors

Jiang Wang and Linbao Luo*
Author Affiliations
  • School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009, China
  • show less
    References(233)

    [1] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 79, 7433-7473(1996).

    [2] Qin Y, Long S B, Dong H et al. Review of deep ultraviolet photodetector based on gallium oxide[J]. Chinese Physics B, 28, 018501(2019).

    [6] Chen M X, Zhao B, Hu G F et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Advanced Functional Materials, 28, 1706379(2018).

    [15] Chen X H, Ren F F, Gu S L et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 7, 381-415(2019).

    [18] Suzuki R, Nakagomi S, Kokubun Y et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing[J]. Applied Physics Letters, 94, 222102(2009).

    [21] Qian H S, Gunawan P, Zhang Y X et al. Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3[J]. Crystal Growth & Design, 8, 1282-1287(2008).

    [23] Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 51, 070203(2012).

    [28] Kaneko K, Nomura T, Fujita S. Corundum-structured α-phase Ga2O3-Cr2O3-Fe2O3 alloy system for novel functions[J]. Physica Status Solidi (c), 7, 2467-2470(2010).

    [36] Cho S B, Mishra R. Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface[J]. Applied Physics Letters, 112, 162101(2018).

    [38] Tahara D, Nishinaka H, Morimoto S et al. Stoichiometric control for heteroepitaxial growth of smooth ε-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 56, 078004(2017).

    [39] Nishinaka H, Tahara D, Yoshimoto M. Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 55, 1202BC(2016).

    [46] Bermudez V M. The structure of low-index surfaces of β-Ga2O3[J]. Chemical Physics, 323, 193-203(2006).

    [53] Víllora E G, Shimamura K, Yoshikawa Y et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping[J]. Applied Physics Letters, 92, 202120(2008).

    [54] Chikoidze E, von Bardeleben H J, Akaiwa K et al. Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films[J]. Journal of Applied Physics, 120, 025109(2016).

    [57] Leedy K D, Chabak K D, Vasilyev V et al. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition[J]. Applied Physics Letters, 111, 012103(2017).

    [62] Alema F, Hertog B, Ledyaev O et al. Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film[J]. Physica Status Solidi (a), 214, 1600688(2017).

    [63] Varley J B, Janotti A, Franchini C et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides[J]. Physical Review B, 85, 081109(2012).

    [64] Li L, Auer E, Liao M Y et al. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts[J]. Nanoscale, 3, 1120-1126(2011).

    [66] Wang T, Farvid S S, Abulikemu M et al. Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals[J]. Journal of the American Chemical Society, 132, 9250-9252(2010).

    [72] Oh S, Kim J, Ren F et al. Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity[J]. Journal of Materials Chemistry C, 4, 9245-9250(2016).

    [74] Hwang W S, Verma A, Peelaers H et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 104, 203111(2014).

    [79] Fleischer M, Meixner H. Electron mobility in single- and polycrystalline Ga2O3[J]. Journal of Applied Physics, 74, 300-305(1993).

    [81] Zhang J G, Li B, Xia C T et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 67, 2448-2451(2006).

    [82] Ohba E, Kobayashi T, Kado M et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method[J]. Japanese Journal of Applied Physics, 55, 1202BF(2016).

    [86] Galazka Z, Uecker R, Irmscher K et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 45, 1229-1236(2010).

    [87] Tomm Y, Reiche P, Klimm D et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 220, 510-514(2000).

    [88] Chase A O. Growth of β-Ga2O3 by the verneuil technique[J]. Journal of the American Ceramic Society, 47, 470(1964).

    [91] Kuramata A, Koshi K, Watanabe S et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 55, 1202A2(2016).

    [96] Liu X Z, Guo P, Sheng T et al. β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector[J]. Optical Materials, 51, 203-207(2016).

    [99] Kalarickal N K, Xia Z B. McGlone J, et al. Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3[J]. Applied Physics Letters, 115, 152106(2019).

    [100] Chen Y P, Liang H W, Xia X C et al. Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (1 0 0) substrates by MOCVD method[J]. Applied Surface Science, 325, 258-261(2015).

    [101] Du X J, Li Z, Luan C N et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 50, 3252-3257(2015).

    [104] Hu D Q, Zhuang S W, Ma Z Z et al. Study on the optical properties of β-Ga2O3 films grown by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 28, 10997-11001(2017).

    [105] Feng Z X, Johnson J M et al. MOCVD epitaxy of β-(AlxGa1-x)2O3 thin films on (010) Ga2O3 substrates and N-type doping[J]. Applied Physics Letters, 115, 120602(2019).

    [112] Hao H, Chen X, Li Z C et al. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment[J]. Journal of Semiconductors, 40, 012806(2019).

    [113] Sinha G, Adhikary K, Chaudhuri S. Sol-gel derived phase pure α-Ga2O3 nanocrystalline thin film and its optical properties[J]. Journal of Crystal Growth, 276, 204-207(2005).

    [114] Kaya A, Mao H, Gao J Y et al. An investigation of electrical and dielectric parameters of Sol-gel process enabled β-Ga2O3 as a gate dielectric material[J]. IEEE Transactions on Electron Devices, 64, 2047-2053(2017).

    [120] An Y H, Chu X L, Huang Y Q et al. Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector[J]. Progress in Natural Science: Materials International, 26, 65-68(2016).

    [123] Lee S Y, Kang H C. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering[J]. Japanese Journal of Applied Physics, 57, 01AE02(2018).

    [124] Li M Q, Yang N, Wang G G et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application[J]. Applied Surface Science, 471, 694-702(2019).

    [125] Xiu X Q, Zhang L Y, Li Y W et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 40, 011805(2019).

    [127] Oshima Y, Villora E G, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 410, 53-58(2015).

    [132] Feng Z X, Bhuiyan A F M A U, Karim M R et al. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties[J]. Applied Physics Letters, 114, 250601(2019).

    [134] Miller R, Alema F, Osinsky A. Epitaxial β-Ga2O3 and β-(AlxGa1-x)2O3/β-Ga2O3 heterostructures growth for power electronics[J]. IEEE Transactions on Semiconductor Manufacturing, 31, 467-474(2018).

    [141] Lai J Y, Hasan M N, Swinnich E et al. Flexible crystalline β-Ga2O3 solar-blind photodetectors[J]. Journal of Materials Chemistry C, 8, 14732-14739(2020).

    [145] Chen X, Liu K W, Zhang Z Z et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction[J]. ACS Applied Materials & Interfaces, 8, 4185-4191(2016).

    [156] Yang C, Liang H W, Zhang Z Z et al. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3[J]. RSC Advances, 8, 6341-6345(2018).

    [171] Wu Z P, Bai G X, Qu Y Y et al. Deep ultraviolet photoconductive and near-infrared luminescence properties of Er 3+-doped β-Ga2O3 thin films[J]. Applied Physics Letters, 108, 211903(2016).

    [172] Zhao X L, Zhi Y S, Cui W et al. Characterization of hexagonal ɛ-Ga1. 8Sn0.2O3 thin films for solar-blind ultraviolet applications[J]. Optical Materials, 62, 651-654(2016).

    [175] Lovejoy T C, Chen R Y, Zheng X et al. Band bending and surface defects in β-Ga2O3[J]. Applied Physics Letters, 100, 181602(2012).

    [177] Armstrong A M, Crawford M H, Jayawardena A et al. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes[J]. Journal of Applied Physics, 119, 103102(2016).

    [179] Huang H L, Xie Y N, Zhang Z F et al. Growth and fabrication of sputtered TiO2 based ultraviolet detectors[J]. Applied Surface Science, 293, 248-254(2014).

    [187] Janotti A, van de Walle C G. Oxygen vacancies in ZnO[J]. Applied Physics Letters, 87, 122102(2005).

    [194] Pratiyush A S, Krishnamoorthy S, Kumar S et al. Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector[J]. Japanese Journal of Applied Physics, 57, 060313(2018).

    [197] Zhang Y F, Chen X H, Xu Y et al. Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3 -based solar-blind detectors tuned by oxygen vacancies[J]. Chinese Physics B, 28, 028501(2019).

    [205] Moloney J, Tesh O, Singh M et al. Atomic layer deposited α-Ga2O3 solar-blind photodetectors[J]. Journal of Physics D: Applied Physics, 52, 475101(2019).

    [220] Zheng W, Lin R, Ran J et al. Vacuum-ultraviolet photovoltaic detector[J]. ACS Nano, 12, 425-431(2018).

    [233] Yan Z Y, Li S, Liu Z et al. High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p-n heterojunction[J]. Journal of Materials Chemistry C, 8, 4502-4509(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jiang Wang, Linbao Luo. Advances in Ga2O3-Based Solar-Blind Ultraviolet Photodetectors[J]. Chinese Journal of Lasers, 2021, 48(11): 1100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Sep. 16, 2020

    Accepted: Dec. 28, 2020

    Published Online: Apr. 28, 2021

    The Author Email: Luo Linbao (luolb@hfut.edu.cn)

    DOI:10.3788/CJL202148.1100001

    Topics