Chinese Journal of Lasers, Volume. 50, Issue 15, 1507104(2023)

Voronoï Analysis for Super‑Resolution Image of Human Erythrocyte Membrane Skeleton

Jianyu Yang1, Fen Hu1、*, Mengdi Hou1, Hao Dong1, Jing Chen1, and Leiting Pan1,2,3,4、**
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
  • 3Shenzhen Research Institute of Nankai University, Shenzhen 518083, Guangdong, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
  • show less
    References(42)

    [1] Qiu Y Z, Myers D R, Lam W A. The biophysics and mechanics of blood from a materials perspective[J]. Nature Reviews Materials, 4, 294-311(2019).

    [2] Corrons J L V, Casafont L B, Frasnedo E F. Concise review: how do red blood cells born, live, and die?[J]. Annals of Hematology, 100, 2425-2433(2021).

    [3] Bennett V, Gilligan D M. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane[J]. Annual Review of Cell Biology, 9, 27-66(1993).

    [4] Risinger M, Kalfa T A. Red cell membrane disorders: structure meets function[J]. Blood, 136, 1250-1261(2020).

    [5] Chen K, Liu J, Heck S et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 17413-17418(2009).

    [6] An X L, Gauthier E, Zhang X H et al. Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin[J]. Blood, 112, 5212-5218(2008).

    [7] Lux S E. Anatomy of the red cell membrane skeleton: unanswered questions[J]. Blood, 127, 187-199(2016).

    [8] Cyrklaff M, Sanchez C P, Kilian N et al. Hemoglobins S and C interfere with actin remodeling in plasmodium falciparum-infected erythrocytes[J]. Science, 334, 1283-1286(2011).

    [9] Cyrklaff M, Srismith S, Nyboer B et al. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes[J]. Nature Communications, 7, 13401(2016).

    [10] Picas L, Rico F, Deforet M et al. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability[J]. ACS Nano, 7, 1054-1063(2013).

    [11] Ciasca G, Papi M, di Claudio S et al. Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level[J]. Nanoscale, 7, 17030-17037(2015).

    [12] Pan L T, Yan R, Li W et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 22, 1151-1158(2018).

    [13] Hou M D, Xing F L, Yang J Y et al. Molecular resolution mapping of erythrocyte cytoskeleton by ultrastructure expansion single-molecule localization microscopy[J]. Small Methods, 7, 2201243(2023).

    [14] Shan Y P, Wang H D. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy[J]. Chemical Society Reviews, 44, 3617-3638(2015).

    [15] Xing F L, Hu F, Yang J Y et al. Structural and functional studies of erythrocyte membrane-skeleton by single-cell and single-molecule techniques[J]. Journal of Innovative Optical Health Sciences, 12, 1830004(2019).

    [16] Tian Z X, Wei Y C, Yu Y L et al. Blood cell analysis: from traditional methods to super-resolution microscopy[J]. Photonics, 9, 261(2022).

    [17] Byers T J, Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton[J]. Proceedings of the National Academy of Sciences of the United States of America, 82, 6153-6157(1985).

    [18] Liu S C, Derick L H, Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton[J]. The Journal of Cell Biology, 104, 527-536(1987).

    [19] Aurenhammer F. Voronoi diagrams: a survey of a fundamental geometric data structure[J]. ACM Computing Surveys, 23, 345-405(1991).

    [20] Chen Z W, Li C, Gao X et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers, 48, 1002109(2021).

    [21] Tan W, Hu Y J, Zhang X M et al. Mission planning of relay UAV based on voronoi-sparrow search algorithm[J]. Electronics Optics & Control, 29, 6-11, 48(2022).

    [22] Yao Z H, Wang F B, Sun Z Q et al. Study on the effects of ultrasonic vibration on the distribution of laser melt injected WC reinforced particles in stainless steel substrate[J]. Chinese Journal of Lasers, 50, 1202006(2023).

    [23] Fukami K, Maulik R, Ramachandra N et al. Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning[J]. Nature Machine Intelligence, 3, 945-951(2021).

    [24] Khater I M, Nabi I R, Hamarneh G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods[J]. Patterns, 1, 100038(2020).

    [25] Yang J Y, Dong H, Xing F L et al. Single-molecule localization super-resolution microscopy and its applications[J]. Laser & Optoelectronics Progress, 58, 1200001(2021).

    [26] Wu Y L, Tschanz A, Krupnik L et al. Quantitative data analysis in single-molecule localization microscopy[J]. Trends in Cell Biology, 30, 837-851(2020).

    [27] Levet F, Hosy E, Kechkar A et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data[J]. Nature Methods, 12, 1065-1071(2015).

    [28] Andronov L, Orlov I, Lutz Y et al. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy[J]. Scientific Reports, 6, 24084(2016).

    [29] Su Q P, Zhao Z W, Meng L M et al. Superresolution imaging reveals spatiotemporal propagation of human replication foci mediated by CTCF-organized chromatin structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 15036-15046(2020).

    [30] Han B R, Zhou R B, Xia C L et al. Structural organization of the actin-spectrin–based membrane skeleton in dendrites and soma of neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, E6678-E6685(2017).

    [31] Levet F, Julien G, Galland R et al. A tessellation-based colocalization analysis approach for single-molecule localization microscopy[J]. Nature Communications, 10, 2379(2019).

    [32] Tania A, Susana P, Hana A et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly[J]. Cell Reports, 37, 110139(2021).

    [33] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [34] Zaninetti L. The Voronoi tessellation generated from different distributions of seeds[J]. Physics Letters A, 165, 143-147(1992).

    [35] Zhu H X, Thorpe S M, Windle A H. The geometrical properties of irregular two-dimensional Voronoi tessellations[J]. Philosophical Magazine A, 81, 2765-2783(2001).

    [36] Weaire D, Kermode J P, Wejchert J. On the distribution of cell areas in a Voronoi network[J]. Philosophical Magazine B, 53, L101-L105(1986).

    [37] Yang J Y, Hu F, Xing F L et al. Clustering segmentation for single-molecule localization super-resolution image of membrane protein by combining multi-step DBSCAN and hierarchical clustering algorithm[J]. Chinese Journal of Lasers, 50, 0307106(2023).

    [38] Duyckaerts C, Godefroy G. Voronoi tessellation to study the numerical density and the spatial distribution of neurones[J]. Journal of Chemical Neuroanatomy, 20, 83-92(2000).

    [39] Clark P J, Evans F C. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology, 35, 445-453(1954).

    [40] Rudd P M, Morgan B P, Wormald M R et al. The glycosylation of the complement regulatory protein, human erythrocyte CD59[J]. Journal of Biological Chemistry, 272, 7229-7244(1997).

    [41] McGough A M, Josephs R. On the structure of erythrocyte spectrin in partially expanded membrane skeletons[J]. Proceedings of the National Academy of Sciences of the United States of America, 87, 5208-5212(1990).

    [42] Ipsaro J J, Mondragón A. Structural basis for spectrin recognition by ankyrin[J]. Blood, 115, 4093-4101(2010).

    Tools

    Get Citation

    Copy Citation Text

    Jianyu Yang, Fen Hu, Mengdi Hou, Hao Dong, Jing Chen, Leiting Pan. Voronoï Analysis for Super‑Resolution Image of Human Erythrocyte Membrane Skeleton[J]. Chinese Journal of Lasers, 2023, 50(15): 1507104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Mar. 29, 2023

    Accepted: Apr. 27, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Hu Fen (plt@nankai.edu.cn), Pan Leiting (hufen@nankai.edu.cn)

    DOI:10.3788/CJL230661

    Topics