Chinese Journal of Lasers, Volume. 39, Issue 8, 803003(2012)
Difference in Microstructures Induced by Femtosecond Laser Scanning on Silicon Surface at Different Temperatures
[2] [2] J. Sipe, J. Yong, J. Preston et al.. Laser-induced periodic surface structure. I. Theory[J]. Phys. Rev. B, 1983, 27(2): 1141~1154
[3] [3] J. Young, J. Preston, H. Van Driel et al.. Laser-induced periodic surface structure, II. Experiments on Ge, Si, Al, and brass[J]. Phys. Rev. B, 1983, 27(2): 1155~1172
[4] [4] J. Young, J. Sipe, H. Van Driel. Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium[J]. Phys. Rev. B, 1984, 30(4): 2001~2015
[7] [7] A. Y. Vorobyev, C. Guo. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon[J]. Opt. Express, 2011, 19(S5): A1031~A1036
[8] [8] T. H. Her, R. J. Finlay, C. Wu et al.. Femtosecond laser-induced formation of spikes on silicon[J]. Appl. Phys. A, 2000, 70(4): 383~385
[9] [9] C. Wu, C. H. Crouch, L. Zhao et al.. Visible luminescence from silicon surfaces microstructured in air[J]. Appl. Phys. Lett., 2002, 81(11): 1999~2002
[10] [10] J. E. Carey, C. H. Crouch, M. Shen et al.. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Opt. Lett., 2005, 30(14): 1773~1775
[11] [11] B. Tull, J. E. Carey, M. A. Sheehy et al.. Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas[J]. Appl. Phys. A, 2006, 83(3): 341~346
[12] [12] A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan et al.. Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation[J]. Appl. Phys. Lett., 2009, 95(3): 034107
[13] [13] J. Bonse, J. Krüger. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. J. Appl. Phys., 2010, 108(3): 034903
[14] [14] J. Bonse, M. Munz, H. Sturm. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. J. Appl. Phys., 2005, 97(1): 013538
[15] [15] M. Huang, F. Zhao, Y. Cheng et al.. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062~4070
[16] [16] J. Bonse, A. Rosenfeld, J. Kruger. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Appl. Surf. Sci., 2010, 257(12): 5420~5423
[17] [17] M. Huang, F. Zhao, Y. Cheng et al.. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass[J]. Opt. Express, 2010, 18(S4): A600~A619
[18] [18] M. Shen, C. Crouch, J. Carey et al.. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Appl. Phys. Lett., 2004, 85(23): 5694~5696
[19] [19] M. Shen, James E. Carey, Catherine H. Crouch et al.. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Lett., 2008, 8(7): 2087~2091
[23] [23] G. Jellison, Jr., F. Modine. Optical functions of silicon between 1.7 and 4.7 eV at elevated temperatures[J]. Phys. Rev. B, 1983, 27(12): 7466~7472
[24] [24] J. Bonse, S. Baudach, J. Krüger et al.. Femtosecond laser ablation of silicon: modification thresholds and morphology[J]. Appl. Phys. A, 2002, 74(1): 19~25
Get Citation
Copy Citation Text
Liu Kui, Feng Guoying, Deng Guoliang, Li Wei. Difference in Microstructures Induced by Femtosecond Laser Scanning on Silicon Surface at Different Temperatures[J]. Chinese Journal of Lasers, 2012, 39(8): 803003
Category: laser manufacturing
Received: Mar. 21, 2012
Accepted: --
Published Online: Jul. 9, 2012
The Author Email: Kui Liu (liukui1008@163.com)