Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0810005(2021)

Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network

Tibo Zha, Lin Luo, Kai Yang*, Yu Zhang, and Jinlong Li
Author Affiliations
  • School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • show less
    References(21)

    [3] Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network[M]. //Leibe B, Matas J, Sebe N, et al. Computer Vision-ECCV 2016. Lecture Notes in Computer Science. Cham: Springer, 9906, 391-407(2016).

    [4] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 1646-1654(2016).

    [5] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [7] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 1874-1883(2016).

    [8] Caballero J, Ledig C, Aitken A et al. Real-time video super-resolution with spatio-temporal networks and motion compensation[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 2848-2857(2017).

    [10] Yang C Y, Ma C, Yang M H. Single-image super-resolution: a benchmark[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer Vision-ECCV 2014. Lecture Notes in Computer Science. Cham: Springer, 8692, 372-386(2014).

    [13] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 105-114(2017).

    [14] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. //Leibe B, Matas J, Sebe N, et al. Computer Vision-ECCV 2016. Lecture Notes in Computer Science. Cham: Springer, 9906, 694-711(2016).

    [15] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA., 1132-1140(2017).

    [18] Wang X T, Yu K, Wu S X et al. ESRGAN: enhanced super-resolution generative adversarial networks[M]. //Leal-Taixé L, Roth S, et al. Computer Vision-ECCV 2018. Lecture Notes in Computer Science. Cham: Springer, 11133, 63-79(2019).

    [20] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. //Fleet D, Pajdla T, Schiele B, et al. Computer Vision-ECCV 2014. Lecture Notes in Computer Science. Cham: Springer, 8693, 740-755(2014).

    Tools

    Get Citation

    Copy Citation Text

    Tibo Zha, Lin Luo, Kai Yang, Yu Zhang, Jinlong Li. Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 28, 2020

    Accepted: Sep. 10, 2020

    Published Online: Apr. 12, 2021

    The Author Email: Kai Yang (yangkai_swjtu@163.com)

    DOI:10.3788/LOP202158.0810005

    Topics