Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0810005(2021)
Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
Fig. 5. Schematic diagram of the training process. (a) Actual training curve; (b) ideal training curve[16]
Fig. 12. Reconstruction effects of two algorithms. (a) Original image; (b) SRGAN algorithm; (c) our algorithm
Fig. 13. Reconstruction results of 5 different algorithms. (a) Overall original image; (b) bicubic interpolation algorithm;(c) SRCNN algorithm; (d) VDSR algorithm; (e) SRResNet algorithm; (f) our algorithm; (g) partial original image
Fig. 14. Railroad track image reconstructed by 5 different algorithms. (a) Overall original image; (b) bicubic interpolation algorithm; (c) SRCNN algorithm; (d) VDSR algorithm; (e) SRResNet algorithm; (f) our algorithm; (g) partial original image
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Tibo Zha, Lin Luo, Kai Yang, Yu Zhang, Jinlong Li. Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810005
Category: Image Processing
Received: Jul. 28, 2020
Accepted: Sep. 10, 2020
Published Online: Apr. 12, 2021
The Author Email: Yang Kai (yangkai_swjtu@163.com)