Journal of Inorganic Materials, Volume. 40, Issue 4, 433(2025)

High-brightness and Monodisperse Quaternary CuInZnS@ZnS Quantum Dots with Tunable and Long-lived Emission

Zi CHEN1, Aidi ZHANG1,2、*, Ke GONG2, Haihua LIU1, Gang YU3, Qingsong SHAN4, Yong LIU2, and Haibo ZENG4、*
Author Affiliations
  • 11. Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
  • 22. Nanjing Bready Advanced Materials Technology Co., Ltd., Nanjing 211103, China
  • 33. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • 44. MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    References(41)

    [1] JAISWAL J K, MATTOUSSI H, MAURO J M et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nature Biotechnology, 47(2002).

    [3] ZHANG Y, LV Y, LI L S et al. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis[J]. Exploration, 20220082(2022).

    [4] WU R, WANG T, WU M et al. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay[J]. Chemical Engineering Journal, 447(2018).

    [5] MEINARDI F, COLOMBO A, VELIZHANIN K A et al. Large- area luminescent solar concentrators based on ‘Stokes-shift- engineered’ nanocrystals in a mass-polymerized PMMA matrix[J]. Nature Photonics, 392(2014).

    [6] DONG H, RAN C, GAO W et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects[J]. eLight, 3(2023).

    [7] YUAN M, LIU M, SARGENT E H. Colloidal quantum dot solids for solution-processed solar cells[J]. Nature Energy, 16016(2016).

    [8] SARGENT E H. Colloidal quantum dot solar cells[J]. Nature Photonics, 133(2012).

    [9] CAO W, ZHANG W, DONG L et al. Progress on quantum dot photocatalysts for biomass valorization[J]. Exploration, 20220169(2023).

    [10] DAI X, ZHANG Z, JIN Y et al. Solution-processed, high- performance light-emitting diodes based on quantum dots[J]. Nature, 96(2014).

    [11] SUN Q, WANG Y A, LI L S et al. Bright, multicoloured light- emitting diodes based on quantum dots[J]. Nature Photonics, 717(2007).

    [12] DONG C, LIU H, ZHANG A et al. Controllable blinking-to- nonblinking behavior of aqueous CdTeS alloyed quantum dots[J]. Chemistry-A European Journal, 1940(2014).

    [13] ZHANG A, DONG C, LIU H et al. Blinking behavior of CdSe/CdS quantum dots controlled by alkylthiols as surface trap modifiers[J]. The Journal of Physical Chemistry C, 24592(2013).

    [14] MCDONALD S A, KONSTANTATOS G, ZHANG S et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 138(2005).

    [15] HUANG P, SUN S, LEI H et al. Nonlocal interaction enhanced biexciton emission in large CsPbBr3 nanocrystals[J]. eLight, 10(2023).

    [16] LIAN W, TU D, WENG X et al. Near-Infrared nanophosphors based on CuInSe2 quantum dots with near-unity photoluminescence quantum yield for micro-LEDs applications[J]. Advanced Materials, 2311011(2024).

    [17] DE TRIZIO L, PRATO M, GENOVESE A et al. Strongly fluorescent quaternary Cu-In-Zn-S nanocrystals prepared from Cu1-xInS2 nanocrystals by partial cation exchange[J]. Chemistry of Materials, 2400(2012).

    [18] LI L, DAOU T J, TEXIER I et al. Highly luminescent CuInS2/ ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging[J]. Chemistry of Materials, 2422(2009).

    [19] ZHONG H, ZHOU Y, YE M et al. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals[J]. Chemistry of Materials, 6434(2008).

    [20] MCDANIEL H, FUKE N, PIETRYGA J M et al. Engineered CuInSexS2-x quantum dots for sensitized solar cells[J]. The Journal of Physical Chemistry Letters, 355(2013).

    [22] ZHONG H, LO S S, MIRKOVIC T et al. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties[J]. ACS Nano, 5253(2010).

    [24] CHUANG P H, LIN C C, LIU R S. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index[J]. ACS Applied Materials & Interfaces, 15379(2014).

    [25] ZHANG A, DONG C, LI L et al. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach[J]. Scientific Reports, 15227(2015).

    [26] THUY U T D, REISS P, LIEM N Q. Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots[J]. Applied Physics Letters, 193104(2010).

    [27] KIM Y K, AHN S H, CHUNG K et al. The photoluminescence of CuInS2 nanocrystals: effect of non-stoichiometry and surface modification[J]. Journal of Materials Chemistry, 1516(2012).

    [28] PARK J, KIM S W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence[J]. Journal of Materials Chemistry, 3745(2011).

    [29] BOLDT K, KIRKWOOD N, BEANE G A et al. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1-xS nanoparticles by in situ alloying[J]. Chemistry of Materials, 4731(2013).

    [32] SPERANSKAYA E S, BELOGLAZOVA N V, ABE S et al. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay[J]. Langmuir, 7567(2014).

    [33] NAM D E, SONG W S, YANG H. Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties[J]. Journal of Colloid and Interface Science, 491(2011).

    [34] CHOI H S, KIM Y, PARK J C et al. Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging[J]. RSC Advances, 43449(2015).

    [35] PORTNIAGIN A S, NING J, WANG S et al. Monodisperse CuInS2/CdS and CuInZnS2/CdS core-shell nanorods with a strong near-infrared emission[J]. Advanced Optical Materials, 2102590(2022).

    [36] LI J J, WANG Y A, GUO W et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society, 12567(2003).

    [37] PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 183(2001).

    [38] FUHR A S, YUN H J, MAKAROV N S et al. Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry[J]. ACS Photonics, 2425(2017).

    [39] GONG K, KELLEY D F. Lattice strain limit for uniform shell deposition in zincblende CdSe/CdS quantum dots[J]. The Journal of Physical Chemistry Letters, 1559(2015).

    [40] GONG K, BEANE G, KELLEY D F. Strain release in metastable CdSe/CdS quantum dots[J]. Chemical Physics, 18(2016).

    [41] GONG K, KELLEY D F. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots[J]. Journal of Chemical Physics, 194704(2014).

    Tools

    Get Citation

    Copy Citation Text

    Zi CHEN, Aidi ZHANG, Ke GONG, Haihua LIU, Gang YU, Qingsong SHAN, Yong LIU, Haibo ZENG. High-brightness and Monodisperse Quaternary CuInZnS@ZnS Quantum Dots with Tunable and Long-lived Emission[J]. Journal of Inorganic Materials, 2025, 40(4): 433

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 8, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Aidi ZHANG (zhangaidi@bready.cn), Haibo ZENG (zeng.haibo@njust.edu.cn)

    DOI:10.15541/jim20240426

    Topics