Opto-Electronic Engineering, Volume. 50, Issue 10, 230161-1(2023)

Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm

Liming Liang, Baohe Lu*, Pengwei Long, and Yuan Yang
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    References(32)

    [1] Liang L M, Zhou L S, Chen X et al. Ghost convolution adaptive retinal vessel segmentation algorithm[J]. Opto-Electron Eng, 48, 210291(2021).

    [2] Liang L M, Yang Y, He A J et al. Cross-stage deformable transformer encoding and decoding algorithm for retinal image segmentation[J]. Radio Eng, 53, 1990-2001(2023).

    [3] Liang L M, Dong X, Li R J et al. Classification algorithm of retinopathy based on attention mechanism and multi feature fusion[J]. Opto-Electron Eng, 50, 220199(2023).

    [4] Lv J, Wang Z Y, Liang H C. Boundary attention assisted dynamic graph convolution for retinal vascular segmentation[J]. Opto-Electron Eng, 50, 220116(2023).

    [5] Vlachos M, Dermatas E. Multi-scale retinal vessel segmentation using line tracking[J]. Comput Med Imaging Graph, 34, 213-227(2010).

    [6] Azzopardi G, Strisciuglio N, Vento M et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Med Image Analy, 19, 46-57(2015).

    [7] Wang X H, Zhao Y Q, Liao M et al. Automatic segmentation for retinal vessel based on multi-scale 2D Gabor wavelet[J]. Acta Autom Sin, 41, 970-980(2015).

    [12] Li Y, Zhang Y, Cui W G et al. Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation[J]. IEEE Trans Med Imag, 41, 1975-1989(2022).

    [13] Wang X, Li Z S, Huang Y P et al. Multimodal medical image segmentation using multi-scale context-aware network[J]. Neurocomputing, 486, 135-146(2022).

    [14] Yang B, Qin L, Peng H et al. SDDC-Net: A U-shaped deep spiking neural P convolutional network for retinal vessel segmentation[J]. Digital Signal Process, 136, 104002(2023).

    [16] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth 16x16 words: Transformers for image recognition at scale[C](2021).

    [20] Ni J J, Sun H Z, Xu J X et al. A feature aggregation and feature fusion network for retinal vessel segmentation[J]. Biomed Signal Process Control, 85, 104829(2023).

    [23] Wang C, Zhao Z Y, Ren Q Q et al. Dense U-net based on patch-based learning for retinal vessel segmentation[J]. Entropy, 21, 168(2019).

    [24] Liu W T, Yang H H, Tian T et al. Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation[J]. IEEE J Biomed Health Inform, 26, 4623-4634(2022).

    [25] Zhang H B, Zhong X, Li Z J et al. TiM-Net: transformer in M-Net for retinal vessel segmentation[J]. J Healthcare Eng, 2022, 9016401(2022).

    [26] Tchinda B S, Tchiotsop D, Noubom M et al. Retinal blood vessels segmentation using classical edge detection filters and the neural network[J]. Inf Med Unlocked, 23, 100521(2021).

    [27] Du X F, Wang J S, Sun W Z. UNet retinal blood vessel segmentation algorithm based on improved pyramid pooling method and attention mechanism[J]. Phys Med Biol, 66, 175013(2021).

    [28] Khan T M, Khan M A U, Rehman N U et al. Width-wise vessel bifurcation for improved retinal vessel segmentation[J]. Biomed Signal Process Control, 71, 103169(2022).

    [29] Guo S. CSGNet: Cascade semantic guided net for retinal vessel segmentation[J]. Biomed Signal Process Control, 78, 103930(2022).

    [30] Li X, Jiang Y C, Li M L et al. Lightweight attention convolutional neural network for retinal vessel image segmentation[J]. IEEE Trans Ind Inf, 17, 1958-1967(2021).

    [31] Yang X, Li Z Q, Guo Y Q et al. DCU-net: A deformable convolutional neural network based on cascade U-net for retinal vessel segmentation[J]. Multimedia Tools Appl, 81, 15593-15607(2022).

    [32] Khan T M, Naqvi S S, Robles-Kelly A et al. Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning[J]. Neural Netw, 165, 310-320(2023).

    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Baohe Lu, Pengwei Long, Yuan Yang. Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm[J]. Opto-Electronic Engineering, 2023, 50(10): 230161-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 3, 2023

    Accepted: Oct. 7, 2023

    Published Online: Jan. 22, 2024

    The Author Email: Baohe Lu (卢宝贺)

    DOI:10.12086/oee.2023.230161

    Topics