Opto-Electronic Engineering, Volume. 50, Issue 10, 230161-1(2023)

Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm

Liming Liang, Baohe Lu*, Pengwei Long, and Yuan Yang
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    Figures & Tables(21)
    Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm
    Cascade group Transformer module
    Cascade group attention module
    Adaptive enhanced attention module
    Gated feature fusion module
    Retinal image preprocessing
    Local feature image blocks of blood vessels
    Results of retinal vessel segmentation by different algorithms
    Image of retinal blood vessel local segmentation by different algorithms
    Comparison between P-R curve and ROC curve of different algorithms in DRIVE dataset
    Comparison between P-R curve and ROC curve of different algorithms in CHASE_DB1 dataset
    Plot of training loss curves in DRIVE dataset and CHASE_DB1 dataset
    • Table 1. Performance metrics of different algorithms for the DRIVE dataset /%

      View table
      View in Article

      Table 1. Performance metrics of different algorithms for the DRIVE dataset /%

      数据集方法AccSenSpeF1AUC
      DRIVEU-Net96.9780.1998.5882.2698.66
      Attention U-Net97.0479.1998.7582.4198.72
      Dense U-Net96.9979.6098.6682.2598.69
      FR U-Net97.0478.9698.7882.4298.74
      Ours97.0980.3898.6982.8798.81
    • Table 2. Performance metrics of different algorithms for the CHASE-DB1 dataset /%

      View table
      View in Article

      Table 2. Performance metrics of different algorithms for the CHASE-DB1 dataset /%

      数据集方法AccSenSpeF1AUC
      CHASE_DB1U-Net97.5080.7998.6280.3298.92
      Attention U-Net97.5778.9998.8280.4398.92
      Dense U-Net97.5381.5198.5480.8098.95
      FR U-Net97.4480.2898.6079.8598.76
      Ours97.6081.0598.7181.0298.99
    • Table 3. Performance metrics of different algorithms for the STARE dataset /%

      View table
      View in Article

      Table 3. Performance metrics of different algorithms for the STARE dataset /%

      数据集方法AccSenSpeF1AUC
      STAREU-Net97.5379.2299.0683.1599.05
      Attention U-Net97.5578.9899.0983.1799.06
      Dense U-Net97.5579.6899.0583.3699.09
      FR U-Net97.5179.8498.9682.9999.01
      Ours97.5780.3298.9983.4299.10
    • Table 4. Comparison results of DRIVE dataset /%

      View table
      View in Article

      Table 4. Comparison results of DRIVE dataset /%

      方法AccSenSpeAUC
      文献[23]96.3878.0598.1696.82
      文献[24]94.8073.5297.7596.78
      文献[25]95.5678.1498.1097.80
      文献[26]96.1081.2597.63
      文献[27]95.7679.4398.1498.23
      文献[28]95.6879.2198.1098.06
      文献[29]95.6881.1597.8098.10
      Ours97.0980.3898.6998.81
    • Table 5. Comparison results of CHASE_DB1 dataset /%

      View table
      View in Article

      Table 5. Comparison results of CHASE_DB1 dataset /%

      方法AccSenSpeAUC
      文献[25]97.1176.9798.6596.48
      文献[26]94.5272.7996.5896.81
      文献[27]95.9081.9597.2797.84
      文献[28]95.7880.1297.30
      文献[29]95.8779.4798.5598.86
      文献[30]96.3578.1898.1998.10
      文献[31]96.6480.7598.4198.72
      Ours97.6081.0598.7198.99
    • Table 6. Comparison results of STARE dataset /%

      View table
      View in Article

      Table 6. Comparison results of STARE dataset /%

      方法AccSenSpeAUC
      文献[25]97.1178.6798.8096.70
      文献[26]95.4872.6597.5996.86
      文献[28]95.8680.7897.21
      文献[29]96.9282.9898.5598.95
      文献[30]96.7883.5298.2398.75
      文献[32]97.4781.9098.7497.06
      Ours97.5780.3298.9999.10
    • Table 7. Analysis of ablation experiments on the DRIVE dataset /%

      View table
      View in Article

      Table 7. Analysis of ablation experiments on the DRIVE dataset /%

      模型AccSenSpeF1AUC
      S196.9780.1998.5882.2698.66
      S297.0679.6998.7382.6298.75
      S397.0678.1898.8782.3698.87
      S497.0980.3898.6982.8798.81
    • Table 8. Analysis of ablation experiments on the CHASE-DB1 dataset /%

      View table
      View in Article

      Table 8. Analysis of ablation experiments on the CHASE-DB1 dataset /%

      模型AccSenSpeF1AUC
      S197.5080.7998.6280.3298.66
      S297.5579.0198.8080.3198.95
      S397.5980.5298.7480.8598.99
      S497.6081.0598.7181.0298.99
    • Table 9. Analysis of ablation experiments on the STARE dataset /%

      View table
      View in Article

      Table 9. Analysis of ablation experiments on the STARE dataset /%

      模型AccSenSpeF1AUC
      S197.5379.2299.0683.1599.05
      S297.5579.3899.0483.1699.04
      S397.5579.9099.0183.3299.08
      S497.5780.3298.9983.4299.10
    Tools

    Get Citation

    Copy Citation Text

    Liming Liang, Baohe Lu, Pengwei Long, Yuan Yang. Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm[J]. Opto-Electronic Engineering, 2023, 50(10): 230161-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 3, 2023

    Accepted: Oct. 7, 2023

    Published Online: Jan. 22, 2024

    The Author Email: Baohe Lu (卢宝贺)

    DOI:10.12086/oee.2023.230161

    Topics